`
hongs_yang
  • 浏览: 61300 次
  • 性别: Icon_minigender_1
  • 来自: 西安
社区版块
存档分类
最新评论

memstore的flush流程分析

阅读更多

memstore的flush流程分析

memstore的flush发起主要从以下几个地方进行:

 a.在HRegionServer调用multi进行更新时,检查是否超过全局的memstore配置的最大值与最小值,

   如果是,发起一个WakeupFlushThread的flush请求,如果超过全局memory的最大值,需要等待flush完成。

 b.在HRegionServer进行数据更新时,调用HRegion.batchMutate更新store中数据时,

   如果region.memstore的大小超过配置的region memstore size时,发起一个FlushRegionEntry的flush请求,

 c.client端显示调用HRegionServer.flushRegion请求

 d.通过hbase.regionserver.optionalcacheflushinterval配置,

   默认3600000ms的HRegionServer.PeriodicMemstoreFlusher定时flush线程

 

flush的执行过程

flush的具体执行通过MemStoreFlusher完成,当发起flushRequest时,

  会把flush的request添加到flushQueue队列中,同时把request添加到regionsInQueue列表中。

MemStoreFlusher实例生成时会启动MemStoreFlusher.FlushHandler线程实例,

  此线程个数通过hbase.hstore.flusher.count配置,默认为1

 

  private class FlushHandler extends HasThread {

    @Override

    public void run() {

      while (!server.isStopped()) {

        FlushQueueEntry fqe = null;

        try {

          wakeupPending.set(false); // allow someone to wake us up again

从队列中取出一个flushrequest,此队列是一个阻塞队列,如果flushQueue队列中没有值,

  等待hbase.server.thread.wakefrequency配置的ms,默认为10*1000

          fqe = flushQueue.poll(threadWakeFrequency, TimeUnit.MILLISECONDS);

          if (fqe == null || fqe instanceof WakeupFlushThread) {

如果没有flush request或者flush request是一个全局flush的request

检查所有的memstore是否超过hbase.regionserver.global.memstore.lowerLimit配置的值,默认0.35

            if (isAboveLowWaterMark()) {

              LOG.debug("Flush thread woke up because memory above low water="

StringUtils.humanReadableInt(globalMemStoreLimitLowMark));

超过配置的最小memstore的值,flsuh掉最大的一个memstore的region

  此执行方法的流程分析见MemStoreFlusher.flushOneForGlobalPressure流程分析

              if (!flushOneForGlobalPressure()) {

 

....................此处部分代码没有显示

 

                Thread.sleep(1000);

没有需要flush的region,叫醒更新线程的等待,

  HregionServer执行数据更新的相关方法如果发现memstore的总和超过配置的最大值时,会wait更新线程,等待flush

 

                wakeUpIfBlocking();

              }

              // Enqueue another one of these tokens so we'll wake up again

发起另一个叫醒的全局flush request,生成WakeupFlushThread的request

              wakeupFlushThread();

            }

            continue;

          }

正常的flush request,

  单个region memstore大小超过hbase.hregion.memstore.flush.size配置的值,默认1024*1024*128L

  此执行方法的流程分析见MemStoreFlusher.flushRegion

          FlushRegionEntry fre = (FlushRegionEntry) fqe;

          if (!flushRegion(fre)) {

            break;

          }

        } catch (InterruptedException ex) {

          continue;

        } catch (ConcurrentModificationException ex) {

          continue;

        } catch (Exception ex) {

          LOG.error("Cache flusher failed for entry " + fqe, ex);

          if (!server.checkFileSystem()) {

            break;

          }

        }

      }

结束MemStoreFlusher的线程调用,通常是regionserver stop

      synchronized (regionsInQueue) {

        regionsInQueue.clear();

        flushQueue.clear();

      }

 

      // Signal anyone waiting, so they see the close flag

      wakeUpIfBlocking();

      LOG.info(getName() + " exiting");

    }

  }

 

MemStoreFlusher.flushOneForGlobalPressure流程分析

此方法主要用来取出所有region是memstore最大的一个region,并执行flush操作。

 

  private boolean flushOneForGlobalPressure() {

    SortedMap<Long, HRegion> regionsBySize =

        server.getCopyOfOnlineRegionsSortedBySize();

 

    Set<HRegion> excludedRegions = new HashSet<HRegion>();

 

    boolean flushedOne = false;

    while (!flushedOne) {

      // Find the biggest region that doesn't have too many storefiles

      // (might be null!)

取出memstore占用最大的一个region,但这个region需要满足以下条件:

a.region的writestate.flushing==false,同时writestate.writesEnabled==true,非readonly

b.region中所有的store中的storefile的个数小于hbase.hstore.blockingStoreFiles配置的值,默认为7

此处去找region时,是按region的memstore的大小从大到小排序组成。取出满足以上条件的最大的memstore的region

  如果都不满足,返回null

      HRegion bestFlushableRegion = getBiggestMemstoreRegion(

          regionsBySize, excludedRegions, true);

      // Find the biggest region, total, even if it might have too many flushes.

取出memstore占用最大的一个region,但这个region需要满足以下条件:

a.region的writestate.flushing==false,同时writestate.writesEnabled==true,非readonly

b.按region的memstore的大小从大到小排序组成。取出满足以上条件的最大的memstore的region

  如果都不满足,返回null,此处不检查region中是否有store的文件个数超过指定的配置值。

      HRegion bestAnyRegion = getBiggestMemstoreRegion(

          regionsBySize, excludedRegions, false);

如果没有拿到上面第二处检查的region,那么表示没有需要flush的region,返回,不进行flush操作。

      if (bestAnyRegion == null) {

        LOG.error("Above memory mark but there are no flushable regions!");

        return false;

      }

得到最需要进行flush的region,

  如果memstore最大的region的memory使用大小已经超过了没有storefile个数超过配置的region的memory大小的2倍

  那么优先flush掉此region的memstore

      HRegion regionToFlush;

      if (bestFlushableRegion != null &&

          bestAnyRegion.memstoreSize.get() > 2 * bestFlushableRegion.memstoreSize.get()) {

 

....................此处部分代码没有显示

 

        if (LOG.isDebugEnabled()) {

....................此处部分代码没有显示

        }

        regionToFlush = bestAnyRegion;

      } else {

如果要flush的region中没有一个region的storefile个数没有超过配置的值,

  (所有region中都有store的file个数超过了配置的store最大storefile个数),

  优先flush掉memstore的占用最大的region

        if (bestFlushableRegion == null) {

          regionToFlush = bestAnyRegion;

        } else {

如果要flush的region中,有region的store还没有超过配置的最大storefile个数,优先flush掉此region

  这样做的目的是为了减少一小部分region数据写入过热,compact太多,而数据写入较冷的region一直没有被flush

          regionToFlush = bestFlushableRegion;

        }

      }

 

      Preconditions.checkState(regionToFlush.memstoreSize.get() > 0);

 

      LOG.info("Flush of region " + regionToFlush + " due to global heap pressure");

 

执行flush操作,设置全局flush的标识为true,见memStoreFlusher.flushRegion全局流程

  如果flush操作出现错误,需要把此region添加到excludedRegions列表中,

    表示这次flush一个region的行为中跳过此region,找下一个memstore最大的region进行flush

 

      flushedOne = flushRegion(regionToFlush, true);

      if (!flushedOne) {

        LOG.info("Excluding unflushable region " + regionToFlush +

          " - trying to find a different region to flush.");

        excludedRegions.add(regionToFlush);

      }

    }

    return true;

  }

 

MemStoreFlusher.flushRegion执行流程分析全局

此方法传入的第二个参数=true表示全局flush,否则表示region的memstore达到指定大小

 返回true表示flush成功,否则表示flush失败

  private boolean flushRegion(final HRegion region, final boolean emergencyFlush) {

    synchronized (this.regionsInQueue) {

从regionsInQueue列表中移出此region,并得到region的flush请求

      FlushRegionEntry fqe = this.regionsInQueue.remove(region);

如果是全局的flush请求,从flushQueue队列中移出此flush请求

      if (fqe != null && emergencyFlush) {

        // Need to remove from region from delay queue.  When NOT an

        // emergencyFlush, then item was removed via a flushQueue.poll.

        flushQueue.remove(fqe);

     }

    }

    lock.readLock().lock();

    try {

执行HRegion.flushcache操作,返回true表示需要做compact,否则表示不需要发起compact请求

      boolean shouldCompact = region.flushcache();

      // We just want to check the size

 

检查是否需要进行split操作,以下条件不做split

a.如果是meta表,不做split操作。

b.如果region配置有distributedLogReplay,同时region在open后,还没有做replay,isRecovering=true

c.splitRequest的值为false,true表示通过client调用过regionServer.splitregion操作。

d.如果c为false,同时当前region中有store的大小

  不超过hbase.hregion.max.filesize的配置值,默认10 * 1024 * 1024 * 1024L(10g)

  或者不超过了hbase.hregion.memstore.flush.size配置的值,默认为1024*1024*128L(128m) * 

  (此region所在的table在当前rs中的所有region个数 * 此region所在的table在当前rs中的所有region个数)

e.如果c为false,或者store中有storefile的类型为reference,也就是此storefile引用了另外一个storefile

f.如果cde的检查结果为true,同时client发起过split请求,

  如果client发起请求时指定了在具体的split row时,但此row在当前region中并不存在,不需要做split

g.以上检查都是相反的值时,此时需要做split操作。

 

      boolean shouldSplit = region.checkSplit() != null;

      if (shouldSplit) {

如果需要进行region的split操作,发起split请求

        this.server.compactSplitThread.requestSplit(region);

      } else if (shouldCompact) {

如果需要做compact发起一个系统的compact请求

        server.compactSplitThread.requestSystemCompaction(

            region, Thread.currentThread().getName());

      }

 

    } catch (DroppedSnapshotException ex) {

....................此处部分代码没有显示

      server.abort("Replay of HLog required. Forcing server shutdown", ex);

      return false;

    } catch (IOException ex) {

....................此处部分代码没有显示

      if (!server.checkFileSystem()) {

        return false;

      }

    } finally {

      lock.readLock().unlock();

叫醒所有对region中数据更新的请求线程,让更新数据向下执行(全局flush会wait做更新)

      wakeUpIfBlocking();

    }

    return true;

  }

 

 

Hregion.flushcache执行流程分析

执行flush流程,并在执行flush前调用cp的preFlush方法与在执行后调用cp.postFlush方法,

在flush前把 writestate.flushing设置为true,表示region正在做flush操作,完成后设置为false

 

  public boolean flushcache() throws IOException {

    // fail-fast instead of waiting on the lock

检查region是否正在进行close。返回false表示不做compact

    if (this.closing.get()) {

      LOG.debug("Skipping flush on " + this + " because closing");

      return false;

    }

    MonitoredTask status = TaskMonitor.get().createStatus("Flushing " + this);

    status.setStatus("Acquiring readlock on region");

    // block waiting for the lock for flushing cache

    lock.readLock().lock();

    try {

如果当前region已经被close掉,不执行flush操作。返回false表示不做compact

      if (this.closed.get()) {

        LOG.debug("Skipping flush on " + this + " because closed");

        status.abort("Skipped: closed");

        return false;

      }

执行cp的flush前操作

      if (coprocessorHost != null) {

        status.setStatus("Running coprocessor pre-flush hooks");

        coprocessorHost.preFlush();

      }

      if (numMutationsWithoutWAL.get() > 0) {

        numMutationsWithoutWAL.set(0);

        dataInMemoryWithoutWAL.set(0);

      }

      synchronized (writestate) {

把region的状态设置为正在flush

        if (!writestate.flushing && writestate.writesEnabled) {

          this.writestate.flushing = true;

        } else {

....................此处部分代码没有显示

 

如果当前region正在做flush,或者region是readonly状态,不执行flush操作。返回false表示不做compact

          return false;

        }

      }

      try {

执行flush操作,对region中所有的store的memstore进行flush操作。

返回是否需要做compact操作的一个boolean值

        boolean result = internalFlushcache(status);

执行cp的flush后操作

        if (coprocessorHost != null) {

          status.setStatus("Running post-flush coprocessor hooks");

          coprocessorHost.postFlush();

        }

 

        status.markComplete("Flush successful");

        return result;

      } finally {

        synchronized (writestate) {

设置正在做flush的状态flushing的值为false,表示flush结束

          writestate.flushing = false;

设置region的flush请求为false

          this.writestate.flushRequested = false;

叫醒所有等待中的更新线程

          writestate.notifyAll();

        }

      }

    } finally {

      lock.readLock().unlock();

      status.cleanup();

    }

  }

flushcache方法调用此方法,而此方法又掉其的一个重载方法

  protected boolean internalFlushcache(MonitoredTask status)

      throws IOException {

    return internalFlushcache(this.log, -1, status);

  }

 

执行flush操作,通过flushcache调用而来,返回是否需要compact

  protected boolean internalFlushcache(

      final HLog wal, final long myseqid, MonitoredTask status)

  throws IOException {

    if (this.rsServices != null && this.rsServices.isAborted()) {

      // Don't flush when server aborting, it's unsafe

      throw new IOException("Aborting flush because server is abortted...");

    }

设置flush的开始时间为当前系统时间,计算flush的耗时用

    final long startTime = EnvironmentEdgeManager.currentTimeMillis();

    // Clear flush flag.

    // If nothing to flush, return and avoid logging start/stop flush.

如果memstore的大小没有值,不执行flsuh直接返回false

    if (this.memstoreSize.get() <= 0) {

      return false;

    }

    if (LOG.isDebugEnabled()) {

      LOG.debug("Started memstore flush for " + this +

        ", current region memstore size " +

        StringUtils.humanReadableInt(this.memstoreSize.get()) +

        ((wal != null)? "": "; wal is null, using passed sequenceid=" + myseqid));

    }

 

    // Stop updates while we snapshot the memstore of all stores. We only have

    // to do this for a moment.  Its quick.  The subsequent sequence id that

    // goes into the HLog after we've flushed all these snapshots also goes

    // into the info file that sits beside the flushed files.

    // We also set the memstore size to zero here before we allow updates

    // again so its value will represent the size of the updates received

    // during the flush

    MultiVersionConsistencyControl.WriteEntry w = null;

 

    // We have to take a write lock during snapshot, or else a write could

    // end up in both snapshot and memstore (makes it difficult to do atomic

    // rows then)

    status.setStatus("Obtaining lock to block concurrent updates");

    // block waiting for the lock for internal flush

    this.updatesLock.writeLock().lock();

    long flushsize = this.memstoreSize.get();

    status.setStatus("Preparing to flush by snapshotting stores");

    List<StoreFlushContext> storeFlushCtxs = new ArrayList<StoreFlushContext>(stores.size());

    long flushSeqId = -1L;

    try {

      // Record the mvcc for all transactions in progress.

 

生成一个 MultiVersionConsistencyControl.WriteEntry实例,此实例的writernumber为mvcc的++memstoreWrite

把WriteEntry添加到mvcc的writeQueue队列中

      w = mvcc.beginMemstoreInsert();

取出并移出writeQueue队列中的WriteEntry实例,得到writerNumber的值,

  并把最大的writerNumber(最后一个)的值复制给memstoreRead,

  叫醒readWaiters的等待(mvcc.waitForRead(w)会等待叫醒)

      mvcc.advanceMemstore(w);

 

      if (wal != null) {

 

把wal中oldestUnflushedSeqNums列表中此region未flush的seqid(append edits日志后最大的seqid)移出

把wal中oldestUnflushedSeqNums中此region的seqid添加到oldestFlushingSeqNums列表中。

得到进行flush的seqid,此值通过wal(FSHLog)的logSeqNum加一得到,

logSeqNum的值通过openRegion调用后得到的regiwriteQueueon的seqid,此值是当前rs中所有region的最大的seqid

同时每次append hlog日志时,会把logSeqNum加一的值加一,并把此值当成hlog的seqid,

 

        Long startSeqId = wal.startCacheFlush(this.getRegionInfo().getEncodedNameAsBytes());

        if (startSeqId == null) {

          status.setStatus("Flush will not be started for [" + this.getRegionInfo().getEncodedName()

              + "] - WAL is going away");

          return false;

        }

        flushSeqId = startSeqId.longValue();

      } else {

        flushSeqId = myseqid;

      }

 

      for (Store s : stores.values()) {

迭代region下的每一个store,生成HStore.StoreFlusherImpl实例

        storeFlushCtxs.add(s.createFlushContext(flushSeqId));

      }

 

      // prepare flush (take a snapshot)

      for (StoreFlushContext flush : storeFlushCtxs) {

迭代region下的每一个store,把memstore下的kvset复制到memstore的snapshot中并清空kvset的值

把memstore的snapshot复制到HStore的snapshot中

        flush.prepare();

      }

    } finally {

      this.updatesLock.writeLock().unlock();

    }

    String s = "Finished memstore snapshotting " + this +

      ", syncing WAL and waiting on mvcc, flushsize=" + flushsize;

    status.setStatus(s);

    if (LOG.isTraceEnabled()) LOG.trace(s);

 

    // sync unflushed WAL changes when deferred log sync is enabled

    // see HBASE-8208 for details

    if (wal != null && !shouldSyncLog()) {

把wal中的日志写入到HDFS中

      wal.sync();

    }

 

    // wait for all in-progress transactions to commit to HLog before

    // we can start the flush. This prevents

    // uncommitted transactions from being written into HFiles.

    // We have to block before we start the flush, otherwise keys that

    // were removed via a rollbackMemstore could be written to Hfiles.

 

等待mvcc中writeQueue队列处理完成,得到最大的memstoreRead值,

  线程等待到mvcc.advanceMemstore(w)处理完成去叫醒。

    mvcc.waitForRead(w);

 

    s = "Flushing stores of " + this;

    status.setStatus(s);

    if (LOG.isTraceEnabled()) LOG.trace(s);

 

    // Any failure from here on out will be catastrophic requiring server

    // restart so hlog content can be replayed and put back into the memstore.

    // Otherwise, the snapshot content while backed up in the hlog, it will not

    // be part of the current running servers state.

    boolean compactionRequested = false;

    try {

      // A.  Flush memstore to all the HStores.

      // Keep running vector of all store files that includes both old and the

      // just-made new flush store file. The new flushed file is still in the

      // tmp directory.

 

      for (StoreFlushContext flush : storeFlushCtxs) {

 

迭代region下的每一个store,调用HStore.flushCache方法,把store中snapshot的数据flush到hfile中

  使用从wal中得到的最新的seqid

通过hbase.hstore.flush.retries.number配置flush失败的重试次数,默认为10次

通过hbase.server.pause配置flush失败时的重试间隔,默认为1000ms

针对每一个Store的flush实例,

   通过hbase.hstore.defaultengine.compactionpolicy.class配置,默认DefaultStoreFlusher进行

每一个HStore.StoreEngine通过hbase.hstore.engine.class配置,默认DefaultStoreEngine

生成StoreFile.Writer实例,此实例的路径为region的.tmp目录下生成一个UUID的文件名称,

   调用storeFlusher的flushSnapshot方法,并得到flush的.tmp目录下的hfile文件路径,

   检查文件是否合法(创建StoreFile.createReader不出错表示合法)

  把memstore中的kv写入到此file文件中

  把此hfile文件的metadata(fileinfo)中写入flush时的最大seqid.

  把生成的hfile临时文件放入到HStore.StoreFlusherImpl实例的tempFiles列表中。

  等待调用HStore.StoreFlusherImpl.commit

 

        flush.flushCache(status);

      }

 

      // Switch snapshot (in memstore) -> new hfile (thus causing

      // all the store scanners to reset/reseek).

      for (StoreFlushContext flush : storeFlushCtxs) {

 

通过HStore.StoreFlusherImpl.commit把.tmp目录下的刚flush的hfile文件移动到指定的cf目录下

针对Hfile文件生成StoreFile与Reader,并把StoreFile添加到HStore的storefiles列表中。

清空HStore.memstore.snapshot的值。

通过hbase.hstore.defaultengine.compactionpolicy.class配置的compactionPolicy,

   默认为ExploringCompactionPolicy,检查是否需要做compaction,

   通过hbase.hstore.compaction.min配置最小做compaction的文件个数,默认为3.

   老版本通过hbase.hstore.compactionThreshold进行配置,最小值不能小于2

   如果当前的Store中所有的Storefile的个数减去正在做compact的个数值大于或等于上面配置的值时,

   表示需要做compact

 

        boolean needsCompaction = flush.commit(status);

        if (needsCompaction) {

          compactionRequested = true;

        }

      }

      storeFlushCtxs.clear();

 

      // Set down the memstore size by amount of flush.

      this.addAndGetGlobalMemstoreSize(-flushsize);

    } catch (Throwable t) {

      // An exception here means that the snapshot was not persisted.

      // The hlog needs to be replayed so its content is restored to memstore.

      // Currently, only a server restart will do this.

      // We used to only catch IOEs but its possible that we'd get other

      // exceptions -- e.g. HBASE-659 was about an NPE -- so now we catch

      // all and sundry.

      if (wal != null) {

        wal.abortCacheFlush(this.getRegionInfo().getEncodedNameAsBytes());

      }

      DroppedSnapshotException dse = new DroppedSnapshotException("region: " +

          Bytes.toStringBinary(getRegionName()));

      dse.initCause(t);

      status.abort("Flush failed: " + StringUtils.stringifyException(t));

      throw dse;

    }

 

    // If we get to here, the HStores have been written.

    if (wal != null) {

把FSHLog.oldestFlushingSeqNums中此region的上一次flush的seqid移出

      wal.completeCacheFlush(this.getRegionInfo().getEncodedNameAsBytes());

    }

 

    // Record latest flush time

更新region的最后一次flush时间

    this.lastFlushTime = EnvironmentEdgeManager.currentTimeMillis();

    

    // Update the last flushed sequence id for region

    if (this.rsServices != null) {

设置regionserver中completeSequenceId的值为最新进行过flush 的wal中的seqid

      completeSequenceId = flushSeqId;

    }

 

    // C. Finally notify anyone waiting on memstore to clear:

    // e.g. checkResources().

    synchronized (this) {

      notifyAll(); // FindBugs NN_NAKED_NOTIFY

    }

 

    long time = EnvironmentEdgeManager.currentTimeMillis() - startTime;

    long memstoresize = this.memstoreSize.get();

    String msg = "Finished memstore flush of ~" +

      StringUtils.humanReadableInt(flushsize) + "/" + flushsize +

      ", currentsize=" +

      StringUtils.humanReadableInt(memstoresize) + "/" + memstoresize +

      " for region " + this + " in " + time + "ms, sequenceid=" + flushSeqId +

      ", compaction requested=" + compactionRequested +

      ((wal == null)? "; wal=null": "");

    LOG.info(msg);

    status.setStatus(msg);

    this.recentFlushes.add(new Pair<Long,Long>(time/1000, flushsize));

 

返回是否需要进行compaction操作。

    return compactionRequested;

  }

 

Region的MemStore达到指定值时的flush

此种flush是region中memstore size的值达到配置的值上限时,发起的flush request,

通过MemStoreFlusher.FlusherHandler.run-->flushRegion(final FlushRegionEntry fqe)发起

 

  private boolean flushRegion(final FlushRegionEntry fqe) {

    HRegion region = fqe.region;

如果region不是meta的region,同时region中有sotre中的storefile个数达到指定的值,

  通过hbase.hstore.blockingStoreFiles配置,默认为7

    if (!region.getRegionInfo().isMetaRegion() &&

        isTooManyStoreFiles(region)) {

检查flush request的等待时间是否超过了指定的等待时间,如果超过打印一些日志

  通过hbase.hstore.blockingWaitTime配置,默认为90000ms

      if (fqe.isMaximumWait(this.blockingWaitTime)) {

        LOG.info("Waited " + (System.currentTimeMillis() - fqe.createTime) +

          "ms on a compaction to clean up 'too many store files'; waited " +

          "long enough... proceeding with flush of " +

          region.getRegionNameAsString());

      } else {

如果flush request的等待时间还不到指定可接受的最大等待时间,

  同时还没有进行过重新flush request,(在队列中重新排队)

  flushQueue队列按FlushRegionEntry的过期时间进行排序,默认情况下是先进先出,

  除非调用过FlushRegionEntry.requeue方法显示指定过期时间

        // If this is first time we've been put off, then emit a log message.

        if (fqe.getRequeueCount() <= 0) {

          // Note: We don't impose blockingStoreFiles constraint on meta regions

          LOG.warn("Region " + region.getRegionNameAsString() + " has too many " +

            "store files; delaying flush up to " + this.blockingWaitTime + "ms");

检查是否需要发起split request,如果是发起split request,如果不需要,发起compaction request.

          if (!this.server.compactSplitThread.requestSplit(region)) {

            try {

发起compaction request.因为此时store中文件个数太多。

可以通过创建table时使用COMPACTION_ENABLED来控制是否做compaction操作,可设置值TRUE/FALSE

              this.server.compactSplitThread.requestSystemCompaction(

                  region, Thread.currentThread().getName());

            } catch (IOException e) {

              LOG.error(

                "Cache flush failed for region " + Bytes.toStringBinary(region.getRegionName()),

                RemoteExceptionHandler.checkIOException(e));

            }

          }

        }

 

        // Put back on the queue.  Have it come back out of the queue

        // after a delay of this.blockingWaitTime / 100 ms.

重新对flushQueue中当前的flush request进行排队,排队到默认900ms后在执行

        this.flushQueue.add(fqe.requeue(this.blockingWaitTime / 100));

        // Tell a lie, it's not flushed but it's ok

        return true;

      }

    }

执行flush操作流程,把全局flush的参数设置为false,表示是memstore size的值达到配置的值上限时

  执行流程不重复分析,见MemStoreFlusher.flushRegion执行流程分析全局

    return flushRegion(region, false);

  }

 

0
0
分享到:
评论
4 楼 gmd2009 2014-05-02  
3 楼 hongs_yang 2014-04-19  
iteye上好像格式没法复制过来。
可以去csdn上看,那上面有格式
http://blog.csdn.net/u014393917
2 楼 hongs_yang 2014-04-19  
复制到word上去看,
1 楼 qindongliang1922 2014-04-19  
注意格式擦

相关推荐

    藏经阁-HBase In-Memory Compaction.pdf

    Accordion的工作流程可以分为三个阶段:MemStore、Flush和Compaction。MemStore阶段,HBase将数据存储在内存中;Flush阶段,HBase将内存中的数据刷写到磁盘;Compaction阶段,HBase将相同的数据合并,减少磁盘存储...

    HBase性能深度分析

    伴随数据写入,内存中的数据达到由“hbase.hregion.memstore.flush.size”参数控制的阈值(默认64MB)时,会被写入到region文件中。当region文件大小达到由“hbase.hregion.max.filesize”参数决定的上限(默认256MB...

    Hbase

    3. **Flush操作**:一个独立的线程负责监视`MemStore`的状态,并在其达到阈值时执行flush操作。flush操作完成后,会记录最后一次写入的序列号,以此来追踪哪些数据已被持久化。 4. **文件管理**:HBase在HDFS上有一...

    HBase最佳实践-写性能优化策略

    和读相比,HBase写数据流程倒是显得很简单:数据先顺序写入HLog,再写入对应的缓存Memstore,当Memstore中数据大小达到一定阈值(128M)之后,系统会异步将Memstore中数据flush到HDFS形成小文件。 HBase数据写入通常...

    HBase架构简介.pdf

    如果MemStore达到预设的大小限制,其内容会被flush到磁盘,形成一个新的HFile。 HBase的通信流程涉及Zookeeper,它是协调系统的关键组件。当客户端需要查询特定的row时,它首先连接Zookeeper获取持有`.ROOT.`和`....

    数据库列存储数据库-2.pptx

    随后,更新会被写入Memstore,当达到一定阈值后,Memstore的内容会被flush到磁盘形成HFile。 HBase的应用场景通常涉及大数据实时查询,例如日志分析、物联网(IoT)数据存储、实时监控等,它特别适合处理大规模稀疏...

    HBaseInMemoryCompaction.pdf

    数据首先被写入MemStore,直到达到一定的大小后,才会被刷新(flush)到磁盘上的文件中(HFile)。 3. HFile:HBase中存储在磁盘上的文件格式,用于存储数据和索引信息。HFile是HBase中数据的持久化存储形式。 ***...

    大数据技术之HBase的面试题.zip

    - 写入时,数据首先被发送到MemStore,当达到一定阈值后,会触发Flush操作,将数据写入HFile。 - 读取时,通过行键定位到对应的Region,然后从HFile和MemStore中查找数据。 5. **HBase的Region分裂**: - 当...

    hbase-2.2.2hbase-2.2.2

    写操作首先将数据写入内存的MemStore,当MemStore达到一定大小时,会触发一个 flush 操作,将数据写入磁盘的HFile。 5. **分布式特性**:HBase的分布式特性体现在Region的自动分配和负载均衡上,Master会监控Region...

    HBase介绍及案例...1541490194.pdf

    当MemStore达到一定大小后会被刷新(flush)到磁盘上,形成一个StoreFile。 - 读取数据时,系统首先检查数据是否在MemStore中,然后查看是否有缓存,最后从StoreFile中读取数据。 HBase的表可以水平切分成多个...

    hbase 1.2.0源码

    1. 写操作:客户端将数据写入本地内存,称为MemStore,当达到一定阈值后,会触发一个 flush 操作,将数据写入磁盘形成HFile,同时更新元数据到HMaster。 2. 读操作:通过行键定位到特定的Region服务器,然后在...

    HBASE基础应用的介绍

    当MemStore达到一定大小时,数据会被flush到磁盘上的StoreFile。 2. **数据读取流程**:读取数据时,会从最新的StoreFile开始查找,然后是旧的StoreFile,最后是WAL,以确保数据的一致性。 3. **Compaction过程**:...

    HBase 系统架构

    1. **数据写入**:数据首先写入 MemStore,当 MemStore 达到一定大小或触发 flush 操作时,会将内存中的数据写入到硬盘的 StoreFile 中。 2. **数据读取**:读取数据时,首先查询 Meta 表获取数据所在的 Region ...

    HBase课件汇总完整版ppt全套课件最全教学教程整本书电子教案全书教案合集最新课件汇编.pptx

    - 写入数据首先被写入内存的 MemStore,当达到一定阈值时,会触发 Flush 操作,将数据写入磁盘的 HFile。 8. **HBase Shell** - HBase 提供了一个命令行工具(Shell),用户可以通过 Shell 进行表的创建、删除、...

    Hbase权威指南源码

    - **写入**:数据首先写入到内存的MemStore,当MemStore达到一定大小时,会触发Flush操作,数据写入到硬盘的HFile。 - **读取**:通过行键和列族定位到特定Region,然后在HFile中查找对应的数据,如果找不到,可能...

    Hadoop+Hbase.ppt

    当MemStore达到一定大小时,会触发Flush操作,将内容写入StoreFile。 2. **读操作**:客户端首先通过HRegion定位找到数据所在的HRegionServer,然后直接从HRegionServer的MemStore或StoreFile中读取数据。 Hbase...

    Hadoop(四)C#操作Hbase.doc

    3. MemStore:写缓存,定期将数据flush到磁盘形成HFile。 4. HFile:在HDFS上存储的有序key-value数据。 【HBase的存储机制】 表由行组成,行由列族构成,列族由列集合构成,列则是键值对的集合。 【HBase安装...

    大数据 76 道面试题及答案.docx

    Region内部还可以划分为store,store内部有memstore和storefile。版本管理:HBase中的数据更新本质上是不断追加新的版本,通过compact操作来做版本间的文件合并。 3. Region的split和集群管理: Region的split是指...

    HBase写性能优化策略

    然后数据被写入到对应的缓存Memstore中,当Memstore中数据达到一定阈值(通常为128MB)后,系统会异步地将数据flush到HDFS中,并形成小文件。在这个过程中,提升写入性能主要可以从WAL写入机制、批量操作、Region...

Global site tag (gtag.js) - Google Analytics