`
hojor
  • 浏览: 109211 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

贪婪算法(二)

阅读更多

1.2 算法思想


在贪婪算法(greedy method)中采用逐步构造最优解的方法。在每个阶段,都作出一个看上去最优的决策(在一定的标准下)。决策一旦作出,就不可再更改。作出贪婪决策的依据称为贪婪准则(greedy criterion)。

例1-4 [找零钱] 一个小孩买了价值少于1美元的糖,并将1美元的钱交给售货员。售货员希望用数目最少的硬币找给小孩。假设提供了数目不限的面值为2 5美分、1 0美分、5美分、及1美分的硬币。售货员分步骤组成要找的零钱数,每次加入一个硬币。选择硬币时所采用的贪婪准则如下:每一次选择应使零钱数尽量增大。为保证解法的可行性(即:所给的零钱等于要找的零钱数),所选择的硬币不应使零钱总数超过最终所需的数目。

假设需要找给小孩6 7美分,首先入选的是两枚2 5美分的硬币,第三枚入选的不能是2 5美分的硬币,否则硬币的选择将不可行(零钱总数超过6 7美分),第三枚应选择1 0美分的硬币,然后是5美分的,最后加入两个1美分的硬币。

贪婪算法有种直觉的倾向,在找零钱时,直觉告诉我们应使找出的硬币数目最少(至少是接近最少的数目)。可以证明采用上述贪婪算法找零钱时所用的硬币数目的确最少(见练习1)。

例1-5 [机器调度] 现有n 件任务和无限多台的机器,任务可以在机器上得到处理。每件任务的开始时间为si,完成时间为fi ,si < fi 。[si , fi ] 为处理任务i 的时间范围。两个任务i,j 重指两个任务的时间范围区间有重叠,而并非是指i,j 的起点或终点重合。例如:区间[ 1,4 ]与区间[ 2,4 ]重叠,而与区间[ 4,7 ]不重叠。一个可行的任务分配是指在分配中没有两件重叠的任务分配给同一台机器。因此,在可行的分配中每台机器在任何时刻最多只处理一个任务。最优分配是指使用的机器最少的可行分配方案。

假设有n= 7件任务,标号为a 到g。它们的开始与完成时间如图13-1a 所示。若将任务a分给机器M1,任务b 分给机器M2,. . .,任务g 分给机器M7,这种分配是可行的分配,共使用了七台机器。但它不是最优分配,因为有其他分配方案可使利用的机器数目更少,例如:可以将任务a、b、d分配给同一台机器,则机器的数目降为五台。

一种获得最优分配的贪婪方法是逐步分配任务。每步分配一件任务,且按任务开始时间的非递减次序进行分配。若已经至少有一件任务分配给某台机器,则称这台机器是旧的;若机器非旧,则它是新的。在选择机器时,采用以下贪婪准则:根据欲分配任务的开始时间,若此时有旧的机器可用,则将任务分给旧的机器。否则,将任务分配给一台新的机器。根据例子中的数据,贪婪算法共分为n = 7步,任务分配的顺序为a、f、b、c、g、e、d。第一步没有旧机器,因此将a 分配给一台新机器(比如M1)。这台机器在0到2时刻处于忙状态。在第二步,考虑任务f。由于当f 启动时旧机器仍处于忙状态,因此将f 分配给一台新机器(设为M2 )。第三步考虑任务b, 由于旧机器M1在Sb = 3时刻已处于闲状态,因此将b分配给M1执行,M1下一次可用时刻变成fb = 7,M2的可用时刻变成ff = 5。第四步,考虑任务c。由于没有旧机器在Sc = 4时刻可用,因此将c 分配给一台新机器(M3),这台机器下一次可用时间为fc = 7。第五步考虑任务g,将其分配给机器M2,第六步将任务e 分配给机器M1, 最后在第七步,任务2分配给机器M3。(注意:任务d 也可分配给机器M2)。

上述贪婪算法能导致最优机器分配的证明留作练习(练习7)。可按如下方式实现一个复杂性为O (nl o gn)的贪婪算法:首先采用一个复杂性为O (nl o gn)的排序算法(如堆排序)按Si 的递增次序排列各个任务,然后使用一个关于旧机器可用时间的最小堆。

例1-6 [最短路径] 给出一个有向网络,路径的长度定义为路径所经过的各边的耗费之和。要求找一条从初始顶点s 到达目的顶点d 的最短路径。

贪婪算法分步构造这条路径,每一步在路径中加入一个顶点。假设当前路径已到达顶点q, 且顶点q 并不是目的顶点d。加入下一个顶点所采用的贪婪准则为:选择离q 最近且目前不在路径中的顶点。

这种贪婪算法并不一定能获得最短路径。例如,假设在图1 3 - 2中希望构造从顶点1到顶点5的最短路径,利用上述贪婪算法,从顶点1开始并寻找目前不在路径中的离顶点1最近的顶点。到达顶点3,长度仅为2个单位,从顶点3可以到达的最近顶点为4,从顶点4到达顶点2,最后到达目的顶点5。所建立的路径为1 , 3 , 4 , 2 , 5,其长度为1 0。这条路径并不是有向图中从1到5的最短路径。事实上,有几条更短的路径存在,例如路径1,4,5的长度为6。

根据上面三个例子,回想一下前几章所考察的一些应用,其中有几种算法也是贪婪算法。例如,霍夫曼树算法,利用n- 1步来建立最小加权外部路径的二叉树,每一步都将两棵二叉树合并为一棵,算法中所使用的贪婪准则为:从可用的二叉树中选出权重最小的两棵。L P T调度规则也是一种贪婪算法,它用n 步来调度n 个作业。首先将作业按时间长短排序,然后在每一步中为一个任务分配一台机器。选择机器所利用的贪婪准则为:使目前的调度时间最短。将新作业调度到最先完成的机器上(即最先空闲的机器)。

注意到在机器调度问题中,贪婪算法并不能保证最优,然而,那是一种直觉的倾向且一般情况下结果总是非常接近最优值。它利 虽然设计一个好的求解算法更像是一门艺术,而不像是技术,但仍然存在一些行之有效的能够用于解决许多问题的算法设计方法,你可以使用这些方法来设计算法,并观察这些算法是如何工作的。一般情况下,为了获得较好的性能,必须对算法进行细致的调整。但是在某些情况下,算法经过调整之后性能仍无法达到要求,这时就必须寻求另外的方法来求解该问题。
 本章首先引入最优化的概念,然后介绍一种直观的问题求解方法:贪婪算法。最后,应用该算法给出货箱装船问题、背包问题、拓扑排序问题、二分覆盖问题、最短路径问题、最小代价生成树等问题的求解方案。

1.1 最优化问题

 本章及后续章节中的许多例子都是最优化问题( optimization problem),每个最优化问题都包含一组限制条件( c o n s t r a i n t)和一个优化函数( optimization function),符合限制条件的问题求解方案称为可行解( feasible solution),使优化函数取得最佳值的可行解称为最优解(optimal solution)。

 例1-1 [ 渴婴问题] 有一个非常渴的、聪明的小婴儿,她可能得到的东西包括一杯水、一桶牛奶、多罐不同种类的果汁、许多不同的装在瓶子或罐子中的苏打水,即婴儿可得到n 种不同的饮料。根据以前关于这n 种饮料的不同体验,此婴儿知道这其中某些饮料更合自己的胃口,因此,婴儿采取如下方法为每一种饮料赋予一个满意度值:饮用1盎司第i 种饮料,对它作出相对评价,将一个数值si 作为满意度赋予第i 种饮料。

 通常,这个婴儿都会尽量饮用具有最大满意度值的饮料来最大限度地满足她解渴的需要,但是不幸的是:具有最大满意度值的饮料有时并没有足够的量来满足此婴儿解渴的需要。设ai是第i 种饮料的总量(以盎司为单位),而此婴儿需要t 盎司的饮料来解渴,那么,需要饮用n种不同的饮料各多少量才能满足婴儿解渴的需求呢?

 设各种饮料的满意度已知。令xi 为婴儿将要饮用的第i 种饮料的量,则需要解决的问题是:

 找到一组实数xi(1≤i≤n),使n ?i = 1si xi 最大,并满足:n ?i=1xi =t 及0≤xi≤ai 。

 需要指出的是:如果n ?i = 1ai < t,则不可能找到问题的求解方案,因为即使喝光所有的饮料也不能使婴儿解渴。

 对上述问题精确的数学描述明确地指出了程序必须完成的工作,根据这些数学公式,可以对输入/ 输出作如下形式的描述:

 输入:n,t,si ,ai(其中1≤i≤n,n 为整数,t、si 、ai 为正实数)。

 输出:实数xi(1≤i≤n),使n ?i= 1si xi 最大且n ?i=1xi =t(0≤xi≤ai)。如果n ?i = 1ai <t,则输出适当的错误信息。

 在这个问题中,限制条件是n ?i= 1xi =t 且0≤xi≤ai,1≤i≤n。而优化函数是n ?i= 1si xi 。任何满足限制条件的一组实数xi 都是可行解,而使n ?i= 1si xi 最大的可行解是最优解。

 例1-2 [装载问题] 有一艘大船准备用来装载货物。所有待装货物都装在货箱中且所有货箱的大小都一样,但货箱的重量都各不相同。设第i 个货箱的重量为wi(1≤i≤n),而货船的最大载重量为c,我们的目的是在货船上装入最多的货物。

 这个问题可以作为最优化问题进行描述:设存在一组变量xi ,其可能取值为0或1。如xi 为0,则货箱i 将不被装上船;如xi 为1,则货箱i 将被装上船。我们的目的是找到一组xi ,使它满足限制条件n ?i = 1wi xi ≤c 且x i ? {0, 1}, 1 ≤i≤n。相应的优化函数是n ?i= 1xi 。 满足限制条件的每一组xi 都是一个可行解,能使n ?i= 1xi 取得最大值的方案是最优解。

 例1-3 [最小代价通讯网络] 城市及城市之间所有可能的通信连接可被视作一个无向图,图的每条边都被赋予一个权值,权值表示建成由这条边所表示的通信连接所要付出的代价。包含图中所有顶点(城市)的连通子图都是一个可行解。设所有的权值都非负,则所有可能的可行解都可表示成无向图的一组生成树,而最优解是其中具有最小代价的生成树。

 在这个问题中,需要选择一个无向图中的边集合的子集,这个子集必须满足如下限制条件:所有的边构成一个生成树。而优化函数是子集中所有边的权值之和。 
1.2 算法思想


在贪婪算法(greedy method)中采用逐步构造最优解的方法。在每个阶段,都作出一个看上去最优的决策(在一定的标准下)。决策一旦作出,就不可再更改。作出贪婪决策的依据称为贪婪准则(greedy criterion)。

例1-4 [找零钱] 一个小孩买了价值少于1美元的糖,并将1美元的钱交给售货员。售货员希望用数目最少的硬币找给小孩。假设提供了数目不限的面值为2 5美分、1 0美分、5美分、及1美分的硬币。售货员分步骤组成要找的零钱数,每次加入一个硬币。选择硬币时所采用的贪婪准则如下:每一次选择应使零钱数尽量增大。为保证解法的可行性(即:所给的零钱等于要找的零钱数),所选择的硬币不应使零钱总数超过最终所需的数目。

假设需要找给小孩6 7美分,首先入选的是两枚2 5美分的硬币,第三枚入选的不能是2 5美分的硬币,否则硬币的选择将不可行(零钱总数超过6 7美分),第三枚应选择1 0美分的硬币,然后是5美分的,最后加入两个1美分的硬币。

贪婪算法有种直觉的倾向,在找零钱时,直觉告诉我们应使找出的硬币数目最少(至少是接近最少的数目)。可以证明采用上述贪婪算法找零钱时所用的硬币数目的确最少(见练习1)。

例1-5 [机器调度] 现有n 件任务和无限多台的机器,任务可以在机器上得到处理。每件任务的开始时间为si,完成时间为fi ,si < fi 。[si , fi ] 为处理任务i 的时间范围。两个任务i,j 重指两个任务的时间范围区间有重叠,而并非是指i,j 的起点或终点重合。例如:区间[ 1,4 ]与区间[ 2,4 ]重叠,而与区间[ 4,7 ]不重叠。一个可行的任务分配是指在分配中没有两件重叠的任务分配给同一台机器。因此,在可行的分配中每台机器在任何时刻最多只处理一个任务。最优分配是指使用的机器最少的可行分配方案。

假设有n= 7件任务,标号为a 到g。它们的开始与完成时间如图13-1a 所示。若将任务a分给机器M1,任务b 分给机器M2,. . .,任务g 分给机器M7,这种分配是可行的分配,共使用了七台机器。但它不是最优分配,因为有其他分配方案可使利用的机器数目更少,例如:可以将任务a、b、d分配给同一台机器,则机器的数目降为五台。

一种获得最优分配的贪婪方法是逐步分配任务。每步分配一件任务,且按任务开始时间的非递减次序进行分配。若已经至少有一件任务分配给某台机器,则称这台机器是旧的;若机器非旧,则它是新的。在选择机器时,采用以下贪婪准则:根据欲分配任务的开始时间,若此时有旧的机器可用,则将任务分给旧的机器。否则,将任务分配给一台新的机器。根据例子中的数据,贪婪算法共分为n = 7步,任务分配的顺序为a、f、b、c、g、e、d。第一步没有旧机器,因此将a 分配给一台新机器(比如M1)。这台机器在0到2时刻处于忙状态。在第二步,考虑任务f。由于当f 启动时旧机器仍处于忙状态,因此将f 分配给一台新机器(设为M2 )。第三步考虑任务b, 由于旧机器M1在Sb = 3时刻已处于闲状态,因此将b分配给M1执行,M1下一次可用时刻变成fb = 7,M2的可用时刻变成ff = 5。第四步,考虑任务c。由于没有旧机器在Sc = 4时刻可用,因此将c 分配给一台新机器(M3),这台机器下一次可用时间为fc = 7。第五步考虑任务g,将其分配给机器M2,第六步将任务e 分配给机器M1, 最后在第七步,任务2分配给机器M3。(注意:任务d 也可分配给机器M2)。

分享到:
评论

相关推荐

    贪婪算法的代码

    ### 贪婪算法在分页式存储管理中的应用 #### 实验背景与目的 本实验旨在通过编写一个模拟分页式存储管理程序,帮助学习者深入理解分页式存储管理的基本概念及其实现方法。实验重点是实现最近最久未使用(LRU)页面...

    贪婪算法关于数学建模

    总结来说,贪婪算法是一种直观的求解策略,适用于一些最优化问题,如数学建模中的货箱装船、背包问题、拓扑排序、二分覆盖、最短路径和最小代价生成树等。然而,由于其不考虑未来决策的特性,贪婪算法并不总是能得出...

    tanlansuanfa.rar_OFDM 贪婪_贪婪_贪婪 Matlab_贪婪算法_贪婪算法OFDM

    二、贪婪算法基础 贪婪算法是一种局部最优决策策略,它在每一步选择当前看起来最好的解决方案,而不是试图找到全局最优解。在OFDM系统中,贪婪算法常用于以下场景: 1. 子载波分配:根据信道状态信息,贪婪算法可以...

    贪婪算法,MATLAB

    二、贪婪算法的优缺点 2.1 优点:计算效率高,因为每次决策都尽可能减少问题的规模,简化了问题的处理。 2.2 缺点:不能保证得到全局最优解,因为贪婪策略可能导致局部最优解而错过全局最优解。因此,对于某些问题...

    压缩感知中贪婪算法

    贪婪算法在压缩感知中扮演着重要角色,特别是Orthogonal Matching Pursuit(OMP)算法,它是解决稀疏信号恢复问题的一种有效方法。 OMP算法是基于迭代的思想,每次迭代中,它找到与残差向量最相关的基向量,并将其...

    贪婪算法仿真,贪婪搜索算法,matlab

    贪婪算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法。在多智能体覆盖问题中,贪婪算法通常用于分配有限的智能体来尽可能有效地覆盖一个区域。...

    tanlan.rar_贪婪算法

    在"tanlan.rar_贪婪算法"这个压缩包中,我们可能找到了关于如何应用贪婪算法解决特定问题的示例,特别是针对描述中的“二十个点的最短路径”问题。 贪婪算法的基本思想是在每一步选择中都采取局部最优解,即每次都...

    贪婪算法 货箱装船问题

    ### 贪婪算法概述与应用案例分析 #### 一、贪婪算法概念 **贪婪算法**是一种简单直观的算法设计策略,它通过一系列局部最优的选择来达到全局最优解的目标。这种算法并不总是能得到全局最优解,但在很多情况下,...

    beibao.rar_贪婪算法 分配

    贪婪算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法策略。在背包问题中,贪婪算法通常用于寻找一个近似解,尽管它可能无法找到问题的全局最优解...

    贪婪算法,回溯,动态规划等一些算法

    在计算机科学领域,算法是解决问题的关键工具,其中贪婪算法、回溯法和动态规划是三种常用的优化策略。本文将深入探讨这些算法的概念、原理及应用。 首先,贪婪算法是一种求解最优解的策略,它在每一步选择中都采取...

    有关贪婪算法的一篇文章

    #### 二、最优化问题与贪婪算法 ##### 2.1 最优化问题概述 最优化问题是计算机科学中的一个核心主题,通常涉及到寻找满足一定约束条件下的最优解。对于每一个最优化问题,都有一个或多个约束条件(constraints)...

    混合迭代贪婪算法求解准时生产分布式流水线调度问题.pdf

    二、混合迭代贪婪算法 混合迭代贪婪算法是一种metaheuristic算法,旨在解决复杂的优化问题。该算法通过迭代式地生成解决方案,并在每一代中应用贪婪算法来选择下一个解决方案。混合迭代贪婪算法的优点是可以快速地...

    贪婪算法的解读与代码实现_数学建模资料

    ### 二、贪婪算法的应用实例 1. **Prim算法与Kruskal算法**:这两者都是解决最小生成树问题的贪婪算法。Prim算法从一个节点出发,每次选择与当前树边权值最小的边加入;而Kruskal算法则先对所有边按权值升序排序,...

    基于成本最小化贪婪算法室内自动布局代码

    本项目聚焦于“基于成本最小化贪婪算法”的室内自动布局代码,旨在通过高效的算法实现室内家具布置的自动化,以达到空间利用率最高、美观度最佳的效果。下面将详细介绍这个主题中的相关知识点。 一、贪婪算法 贪婪...

    装箱问题贪婪算法的运用

    贪婪算法是一种解决问题的有效策略,它不追求全局最优解,而是每一步都选择当前看起来最佳的决策,以此构建局部最优解,希望通过这些局部最优解组合成一个较好的全局解。这种算法适用于那些可以通过局部最优决策达到...

    0-1背包问题-贪婪算法

    #### 二、贪婪算法简介 贪婪算法是一种简单直观的求解最优化问题的方法,其基本思想是在每一步选择中都采取当前状态下最优的选择,从而希望最终达到全局最优解。对于0-1背包问题而言,贪婪算法通常不是最佳选择,...

    matlab求贪婪算法-装箱问题的练习.docx

    Matlab实现贪婪算法解决装箱问题 以下是对给定文件信息的详细解释和知识点总结: 贪婪算法 贪婪算法(Greedy Algorithm)是一种常用的近似算法,用于解决组合优化问题。其基本思想是,在每一步选择中,选择当前...

    遗传算法和贪婪算法结合解决背包问题,matlab程序

    本算法用遗传算法和贪婪算法解决了背包问题,产生解得方法用贪婪算法,然后引入了一个错解的修复算法,搜索的时候用遗传算法。保证了快速收敛和解的完备性。包含源程序,算法介绍以及一份详细的报告,希望对读者有很...

Global site tag (gtag.js) - Google Analytics