转载1.文章出处:http://blog.sina.com.cn/s/blog_4dc0f99c01019hlr.html
用到cocos2d的坐标转换,一般两种情况:
1)从当前坐标点获取世界坐标点(屏幕坐标点,opengl的坐标系)
2)从当前坐标点获取相对于某个CCNode的坐标点;
第一种情况,直接用:nodeParent->convertToWorldSpace(node->getPosition());
这里一定是需要转换坐标对象的父类调用convertToWorldSpace,参数是对象的坐标点(相对于父类的坐标点);
返回的是屏幕坐标点;
第二种情况,直接用:node2->convertToNodeSpace(node1->getPosition);
node2并不是node1的父类,现在的情况就是:node1想得到相对于node2坐标系的坐标点;
返回的是相对于node2坐标系的坐标点。
以上的调用,是没有考虑nodeParent和node2的anchorPoint的(就是使用了0,0的锚点);考虑到锚点就使用:
convertToWorldSpaceAR()和convertToNodeSpaceAR();具体含义了?
nodeParent->convertToWorldSpaceAR(node->getPosition()):因为默认是0,0的锚点,
所以其得到的坐标点是ccpAdd(nodeParent->convertToWorldSpace(node->getPosition()),ccp(nodeParent->getContentSize.width*0.5,nodeParent->getContentSize.height*0.5))
node2->convertToNodeSpaceAR(node1->getPosition):因为默认是0,0的锚点,
所以其得到的坐标点是 ccpSub(nodeParent->convertToWorldSpace(node->getPosition()),ccp(node2->getContentSize.width*0.5,node2->getContentSize.height*0.5))
对cocos2d-x里面的四个表示坐标的方法进行了一下研究,特意做了下笔记,如下:
CCPoint convertToNodeSpace(const CCPoint& worldPoint);
CCPoint convertToWorldSpace(const CCPoint& nodePoint);
CCPoint convertToNodeSpaceAR(const CCPoint& worldPoint);
CCPoint convertToWorldSpaceAR(const CCPoint& nodePoint);
在理解这个之前,要多世界坐标和本地坐标有一定的理解,
GL坐标系Cocos2D以OpenglES为图形库,所以它使用OpenglES坐标系。GL坐标系原点在屏幕左下角,x轴向右,y轴向上。
屏幕坐标系苹果的Quarze2D使用的是不同的坐标系统,原点在屏幕左上角,x轴向右,y轴向下。ios的屏幕触摸事件CCTouch传入的位置信息使用的是该坐标系。因此在cocos2d中对触摸事件做出响应前需要首先把触摸点转化到GL坐标系。可以使用CCDirector的convertToGL来完成这一转化。
世界坐标系也叫做绝对坐标系,cocos2d中的元素是有父子关系的层级结构,我们通过CCNode的position设定元素的位置使用的是相对与其父节点的本地坐标系而非世界坐标系。最后在绘制屏幕的时候cocos2d会把这些元素的本地坐标映射成世界坐标系坐标。世界坐标系和GL坐标系一致,原点在屏幕左下角,
本地坐标系本地坐标系也叫做物体坐标系,是和特定物体相关联的坐标系。每个物体都有它们独立的坐标系,当物体移动或改变方向时,和该物体关联的坐标系将随之移动或改变方向。比如用cocos2d-x创建了个矩形colorLayer:CCRect(10,10,100,100),这是的本地坐标系为以(10,10)为坐标原点,x轴向右,y轴向上。如果创建了一个CCSprite,锚点为(0.5,0.5),位置为(100,100),size为(40,40),这时的本地坐标系为以(80,80)为坐标原点,x轴向右,y轴向上。总之,本地坐标系原点为node的左下角坐标
接下来,convertToNodeSpace:调用CCPoint point = node1->convertToNodeSpace(node2->getPosition());
将node2的坐标转化成相对于node1的本地坐标
<img alt="cocos2d-x 坐标研究 - zjfzjf - zjfzjf" src="http://img8.ph.126.net/Cn0h6tnV9MdML-h8oHJ1VA==/6597250086564682808.jpg" style="max-width: 100%; margin: 0px 10px 0px 0px;" title="cocos2d 坐标转换">
,
比如坐标如上图所示,node1的锚点为(0,0),node2的锚点为(1,1),转化之后,node的坐标变成了(-25,-60)
而convertToWorldSpace:调用CCPoint point = node1->convertToWorldSpace(node2->getPosition());
<img alt="cocos2d-x 坐标研究 - zjfzjf - zjfzjf" src="http://img6.ph.126.net/zNmXCoxKIOYX6iVEk50pbQ==/6597477685470329996.jpg" style="max-width: 100%; margin: 0px 10px 0px 0px;" title="cocos2d 坐标转换">
是将node的坐标转化成相对于node1的世界坐标,如上图所示:首先将node1的坐标当做世界坐标,然后让node2的坐标位置重置成相对于node1的世界坐标,也就是(15,20)。
convertToNodeSpaceAR,就是把node1的坐标系原点设置在锚点的位置,这里的锚点是(0,0)所以转化之后的坐标系位置和上面的convertToNodeSpace一样,结果也是一样的,convertToWorldSpaceAR同理
测试:
CCSprite *sprite1 = CCSprite::spriteWithFile("CloseNormal.png");
sprite1->setPosition(ccp(20,40));
sprite1->setAnchorPoint(ccp(0,0));
this->addChild(sprite1);
CCSprite *sprite2 = CCSprite::spriteWithFile("CloseNormal.png");
sprite2->setPosition(ccp(-5,-20));
sprite2->setAnchorPoint(ccp(1,1));
this->addChild(sprite2);
CCPoint point1 = sprite1->convertToNodeSpace(sprite2->getPosition());
CCPoint point2 = sprite1->convertToWorldSpace(sprite2->getPosition());
CCPoint point3 = sprite1->convertToNodeSpaceAR(sprite2->getPosition());
CCPoint point4 = sprite1->convertToWorldSpaceAR(sprite2->getPosition());
CCLog("position = (%f,%f)",point1.x,point1.y);
CCLog("position = (%f,%f)",point2.x,point2.y);
CCLog("position = (%f,%f)",point3.x,point3.y);
CCLog("position = (%f,%f)",point4.x,point4.y);
运行结果:
position = (-25.000000,-60.000000)
position = (15.000000,20.000000)
position = (-25.000000,-60.000000)
position = (15.000000,20.000000)
和预算的一样
这里在将sprite1的锚点设置成(0.5,0.5),对convertToNodeSpaceAR和convertToWorldSpaceAR进行了进一步的测试
sprite1->setAnchorPoint(ccp(0.5,0.5));
sprite1->setPosition(ccp(100,100));
CCPoint point5 = sprite1->convertToNodeSpaceAR(sprite2->getPosition());
CCPoint point6 = sprite1->convertToWorldSpaceAR(sprite2->getPosition());
CCLog("position = (%f,%f)",point5.x,point5.y);
CCLog("position = (%f,%f)",point6.x,point5.y);
运算结果:
size = (40.000000,40.000000)
position = (-105.000000,-120.000000)
position = (95.000000,80.000000)
分析:重置的sprite1的坐标为(100,100),锚点为(0.5,0.5)所以对于convertToNodeSpaceAR和convertToWorldSpaceAR这两个方法的坐标系为原点(100,100),所以用convertToNodeSpaceAR转化之后的坐标为(-105,-120)用convertToWorldSpaceAR化之后的坐标为(95,80),和运算结果一样。
转载2.文章出处:http://blog.csdn.net/tskyfree/article/details/8292544
Cocos-2d中,涉及到4种坐标系:
GL坐标系Cocos2D以OpenglES为图形库,所以它使用OpenglES坐标系。GL坐标系原点在屏幕左下角,x轴向右,y轴向上。
屏幕坐标系苹果的Quarze2D使用的是不同的坐标系统,原点在屏幕左上角,x轴向右,y轴向下。ios的屏幕触摸事件CCTouch传入的位置信息使用的是该坐标系。因此在cocos2d中对触摸事件做出响应前需要首先把触摸点转化到GL坐标系。可以使用CCDirector的convertToGL来完成这一转化。
世界坐标系也叫做绝对坐标系。世界坐标系和GL坐标系一致,原点在屏幕左下角。
(cocos2d中的元素是有父子关系的层级结构,我们通过CCNode的position设定元素的位置使用的是相对与其父节点的本地坐标系而非世界坐标系。最后在绘制屏幕的时候cocos2d会把这些元素的本地坐标映射成世界坐标系坐标。)
本地坐标系本地坐标系也叫做物体坐标系,是和特定物体相关联的坐标系。每个物体都有它们独立的坐标系,当物体移动或改变方向时,和该物体关联的坐标系将随之移动或改变方向。比如用cocos2d-x创建了个矩形colorLayer:CCRect(10,10,100,100),这是的本地坐标系为以(10,10)为坐标原点,x轴向右,y轴向上。如果创建了一个CCSprite,锚点为(0.5,0.5),位置为(100,100),size为(40,40),这时的本地坐标系为以(80,80)为坐标原点,x轴向右,y轴向上。
Cocos-2d中,坐标系转换:
CCPoint convertToNodeSpace(const CCPoint& worldPoint);
CCPoint convertToWorldSpace(const CCPoint& nodePoint);
CCPoint convertToNodeSpaceAR(const CCPoint& worldPoint);
CCPoint convertToWorldSpaceAR(const CCPoint& nodePoint);
1.CCPoint convertToNodeSpace(const CCPoint& worldPoint);
CGPoint nodeSpace = [spriteParentconvertToNodeSpace:orignPosition];
将orignPosition转换为相对于spriteParent的本地坐标
2.CCPoint convertToWorldSpace(const CCPoint& nodePoint);
CGPoint wordeSpace = [spriteParentconvertToWorldSpace:orignPosition];
将orignPosition转换为相对于spriteParent的世界坐标
3.CCPoint convertToNodeSpaceAR(const CCPoint& worldPoint);
CGPoint nodeSpaceAR = [spriteParentconvertToWorldSpace:orignPosition];
将spriteParent的坐标系原点设置在spriteParent的锚点位置
然后 orignPosition转换为相对于spriteParent的本地坐标
4.CCPoint convertToWorldSpaceAR(const CCPoint& nodePoint);
CGPoint wordeSpaceAR = [spriteParentconvertToWorldSpace:orignPosition];
将spriteParent的坐标系原点设置在spriteParent的锚点位置
然后 orignPosition转换为相对于spriteParent的世界坐标。
分享到:
相关推荐
电动汽车充电站选址定容优化:基于MATLAB建模求解与成本最小化策略,电动汽车充电站选址定容优化:基于MATLAB的最优规划模型及初学者指南,电动汽车充电站的最优选址定容MATLAB程序 以规划期内充电站的总成本 (包括投资、运行和维护成本)和网损费用之和最小为目标,考虑了相关的约束条件,构造了电动汽车充电站最优规划的数学模型。 从34个位置中,选取7个充电站地址,进行选址优化 关键词:电动汽车;充电站;选址和定容 程序注释清晰,适合初学者学习 ,电动汽车; 充电站选址定容; MATLAB程序; 规划模型; 成本优化; 网损费用; 初学者学习; 程序注释清晰,基于MATLAB的电动汽车充电站选址定容优化程序:成本最小化与约束条件下的选址策略
基于源荷双重不确定性的虚拟电厂日前鲁棒经济调度优化模型基于MATLAB+CPLEX仿真平台求解,基于源荷双重不确定性的虚拟电厂日前鲁棒优化经济调度策略,MATLAB代码:计及源-荷双重不确定性的电厂日前鲁棒优化调度 关键词:电厂 微网调度 鲁棒调度 源荷不确定性 日前经济调度 参考文档:《含电动汽车和风电机组的发电厂竞价策略_杨甲甲》参考其鲁棒模型的化简求解部分,即附录中的鲁棒问题化简求解的全过程; 《Virtual power plant mid-term dispatch optimization》参考燃气轮机、储能部分模型 仿真平台:MATLAB+CPLEX 主要内容:代码主要做的是一个电厂或者微网单元的日前鲁棒经济调度的模型,考虑了光伏出力和负荷功率的双重不确定性,采用鲁棒优化法处理不确定性变量,构建了电厂鲁棒优化调度模型。 具体来看,不确定性考虑的是目标函数以及约束条件中均含有不确定变量,设置鲁棒系数可以调节多重不确定结果,化简的过程也很清晰,程序实现效果良好,一行一注释。 ,关键词:虚拟电厂; 鲁棒优化调度; 源荷不确定性; 日前经济调度; 微网调度; 光伏出力
基于遗传算法的储能优化配置研究:成本模型分析与最优运行计划求解(含风光机组),基于遗传算法的储能优化配置:成本模型分析与最优运行计划求解(含风光机组),MATLAB代码:基于遗传算法的储能优化配置(可加入风光机组) 关键词:储能优化配置 遗传算法 储能充放电优化 参考文档:无明显参考文档,仅有几篇文献可以适当参考 仿真平台:MATLAB 平台采用遗传算法实现求解 优势:代码注释详实,适合参考学习,非目前烂大街的版本,程序非常精品,请仔细辨识 主要内容:建立了储能的成本模型,包含运行维护成本以及容量配置成本,然后以该成本函数最小为目标函数,经过遗传算法求解出其最优运行计划,并通过其运行计划最终确定储能容量配置的大小,求解采用的是遗传算法,求解效果极佳,具体可以看图 ,关键词:MATLAB代码;遗传算法;储能优化配置;储能充放电优化;成本模型;运行维护成本;容量配置成本;最优运行计划;求解效果。,基于遗传算法的储能优化配置MATLAB代码:精细优化与成本最小化研究
如本文所描述,设计模式经典实现、三种其他实现方式以及六个方向的问题优化的详细代码
高性能DSP28335驱动的移相全桥同步整流技术:高效电源输出与轻量级结构设计,基于DSP28335的高效同步整流电源系统:移相全桥驱动,低损耗输出近94%效率,铝基板+平面变压器设计挑战与低成本方案探索,自研DSP28335+移相全桥+纯程序实现同步整流。 目前在DSP固有损耗2W的情况下,输出120W效率接近94%。 就是铝基板+平面变压器玩起来太贵,不好做小批量,335现在也很贵。 基于035的低成本版本近期开始设计~~~ 数字电源demo,输入18-32V,输出12V15A,伍尔特电感+平面变压器+板上平面变压器辅助电源,隔离半桥驱动+隔离采样,用于技术交流和样机平台搭建。 采用上下叠板架构,上板为4层DSP控制板,下板为单层功率铝基板,散热极佳。 ,自研DSP28335; 移相全桥; 纯程序同步整流; 效率接近94%; 低成本版本设计; 数字电源demo; 上下叠板架构; DSP控制板; 散热。,自研DSP28335控制下的同步整流技术优化:效率接近94%的电源解决方案
PPT模板 -星际郎中:守护星际生命.pptx
19考试真题最近的t41.txt
Xilinx公司推出的7系列FPGA中的GTX/GTH收发器是用于高速串行通信的收发器模块,能够实现数据的高速串行传输。本资料为Xilinx提供的用户手册ug476_7Series_Transceivers
GearTrain 提供了灵活的推理框架, 支持视频、图片推理方式。基于 GearTrain 用户可像齿轮一样自由组合各种Pipeline,实现各种推理任务
一个测试的网页布局,作为备份
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用,资源为网络商品(电子资料类)基于网络商品和电子资料商品的性质和特征不支持退款,质量优质,放心下载使用
内蒙古自治区公共数据资源登记管理暂行办法.docx
MATLAB下基于遗传算法的有序充放电优化策略:实现电动汽车充电费用最低与负荷峰谷平衡,基于遗传算法的电动汽车有序充放电优化策略:精英自适应混合算法实现负荷均衡与费用最小化,MATLAB代码:基于遗传算法的电动汽车有序充放电优化 关键词:遗传算法 电动汽车 有序充电 优化调度 参考文档:《精英自适应混合遗传算法及其实现_江建》算法部分;电动汽车建模部分相关文档太多,自行搜索参考即可; 仿真平台:MATLAB 主要内容:代码主要做的是利用遗传算法对电动汽车有序充电进行优化;优化目标包括充电费用最低,充电时间达到要求(电动汽车充到足够的电)考虑电动汽车充电对电网负荷的影响,使负荷峰谷差最小。 分别利用传统、精英和变异遗传算法进行对比算法优劣,比较迭代结果,优化变量为起始充电时刻 ,关键词:MATLAB代码; 遗传算法; 电动汽车; 有序充电; 优化调度; 充电费用; 充电时间; 电网负荷; 精英自适应混合遗传算法; 迭代结果; 优化变量。,基于遗传算法的电动汽车有序充放电优化调度策略研究
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用,资源为网络商品(电子资料类)基于网络商品和电子资料商品的性质和特征不支持退款
STM32开发:IIR带阻滤波器设计与实现,含巴特沃斯和切比雪夫滤波器MATLAB程序,STM32开发中IIR带阻滤波器的实现与巴特沃斯滤波器设计详解:附MATLAB程序,STM32开发 IIR带阻滤波器 STM32实现IIR无限冲击响应带阻滤波器设计,巴特沃斯滤波器,代码工整,自编代码,注释详细,赠送巴特沃斯和切比雪夫IIR带阻滤波器MATLAB程序 ,STM32开发; IIR带阻滤波器; 无限冲击响应; 巴特沃斯滤波器; 自编代码; 注释详细; MATLAB程序,STM32中IIR带阻滤波器设计与实现
项目工程资源经过严格测试运行并且功能上ok,可实现复现复刻,拿到资料包后可实现复现出一样的项目,本人系统开发经验充足(全栈全领域),有任何使用问题欢迎随时与我联系,我会抽时间努力为您解惑,提供帮助 【资源内容】:包含源码+工程文件+说明等。答辩评审平均分达到96分,放心下载使用!可实现复现;设计报告也可借鉴此项目;该资源内项目代码都经过测试运行,功能ok 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 【提供帮助】:有任何使用上的问题欢迎随时与我联系,抽时间努力解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 下载后请首先打开说明文件(如有);整理时不同项目所包含资源内容不同;项目工程可实现复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用,资源为网络商品(电子资料类)基于网络商品和电子资料商品的性质和特征不支持退款,质量优质,放心下载使用
包含输入输出,可视化案例。聚类算法
基于PLC的地铁排水控制系统设计:梯形图程序、接线图与IO分配组态全解析,基于PLC的地铁排水控制系统设计:梯形图程序、接线图与IO分配组态全解析,No.505 基于PLC的地铁排水控制系统设计电气控制程序 带解释的梯形图程序,接线图原理图图纸,io分配,组态画面 ,505; PLC地铁排水控制; 电气控制程序; 梯形图程序; 接线图原理图; IO分配; 组态画面,PLC驱动的地铁排水系统设计:电气控制程序详解及图解
报告电子元器件手册目录,常见电子元器件的参考资料以及70种电子元器件封装等等,非常适合初学者进行学习和掌握。希望大家都能够在电子领域进行深耕。