在Java类库中出现的第一个关联的集合类是 Hashtable
,它是JDK 1.0的一部分。 Hashtable
提供了一种易于使用的、线程安全的、关联的map功能,这当然也是方便的。然而,线程安全性是凭代价换来的―― Hashtable
的所有方法都是同步的。此时,无竞争的同步会导致可观的性能代价。 Hashtable
的后继者 HashMap
是作为JDK1.2中的集合框架的一部分出现的,它通过提供一个不同步的基类和一个同步的包装器 Collections.synchronizedMap
,解决了线程安全性问题。通过将基本的功能从线程安全性中分离开来, Collections.synchronizedMap
允许需要同步的用户可以拥有同步,而不需要同步的用户则不必为同步付出代价。
Hashtable
和 synchronizedMap
所采取的获得同步的简单方法(同步 Hashtable
中或者同步的 Map
包装器对象中的每个方法)有两个主要的不足。首先,这种方法对于可伸缩性是一种障碍,因为一次只能有一个线程可以访问hash表。同时,这样仍不足以提供真正的线程安全性,许多公用的混合操作仍然需要额外的同步。虽然诸如 get()
和 put()
之类的简单操作可以在不需要额外同步的情况下安全地完成,但还是有一些公用的操作序列,例如迭代或者put-if-absent(空则放入),需要外部的同步,以避免数据争用。
同步的集合包装器 synchronizedMap
和 synchronizedList
,有时也被称作 有条件地线程安全 ――所有单个的操作都是线程安全的,但是多个操作组成的操作序列却可能导致数据争用,因为在操作序列中控制流取决于前面操作的结果。 清单1 中第一片段展示了公用的put-if-absent语句块――如果一个条目不在 Map
中,那么添加这个条目。不幸的是,在 containsKey()
方法返回到 put()
方法被调用这段时间内,可能会有另一个线程也插入一个带有相同键的值。如果您想确保只有一次插入,您需要用一个对 Map m
进行同步的同步块将这一对语句包装起来。
清单1 中其他的例子与迭代有关。在第一个例子中, List.size()
的结果在循环的执行期间可能会变得无效,因为另一个线程可以从这个列表中删除条目。如果时机不得当,在刚好进入循环的最后一次迭代之后有一个条目被另一个线程删除了,则 List.get()
将返回 null
,而 doSomething()
则很可能会抛出一个 NullPointerException
异常。那么,采取什么措施才能避免这种情况呢?如果当您正在迭代一个 List
时另一个线程也可能正在访问这个 List
,那么在进行迭代时您必须使用一个 synchronized
块将这个 List
包装起来,在 List
1 上同步,从而锁住整个 List
。这样做虽然解决了数据争用问题,但是在并发性方面付出了更多的代价,因为在迭代期间锁住整个 List
会阻塞其他线程,使它们在很长一段时间内不能访问这个列表。
集合框架引入了迭代器,用于遍历一个列表或者其他集合,从而优化了对一个集合中的元素进行迭代的过程。然而,在 java.util
集合类中实现的迭代器极易崩溃,也就是说,如果在一个线程正在通过一个 Iterator
遍历集合时,另一个线程也来修改这个集合,那么接下来的 Iterator.hasNext()
或 Iterator.next()
调用将抛出 ConcurrentModificationException
异常。就拿刚才这个例子来讲,如果想要防止出现 ConcurrentModificationException
异常,那么当您正在进行迭代时,您必须使用一个在 List l
上同步的 synchronized
块将该 List
包装起来,从而锁住整个 List
。(或者,您也可以调用 List.toArray()
,在不同步的情况下对数组进行迭代,但是如果列表比较大的话这样做代价很高)。
Map m = Collections.synchronizedMap(new HashMap()); List l = Collections.synchronizedList(new ArrayList()); // put-if-absent idiom -- contains a race condition // may require external synchronization if (!map.containsKey(key)) map.put(key, value); // ad-hoc iteration -- contains race conditions // may require external synchronization for (int i=0; i<list.size(); i++) { doSomething(list.get(i)); } // normal iteration -- can throw ConcurrentModificationException // may require external synchronization for (Iterator i=list.iterator(); i.hasNext(); ) { doSomething(i.next()); } |
synchronizedList
和 synchronizedMap
提供的有条件的线程安全性也带来了一个隐患 ――
开发者会假设,因为这些集合都是同步的,所以它们都是线程安全的,这样一来他们对于正确地同步混合操作这件事就会疏忽。其结果是尽管表面上这些程序在负载较轻的时候能够正常工作,但是一旦负载较重,它们就会开始抛出 NullPointerException
或 ConcurrentModificationException
。
![]() ![]() |
![]()
|
可伸缩性指的是一个应用程序在工作负载和可用处理资源增加时其吞吐量的表现情况。一个可伸缩的程序能够通过使用更多的处理器、内存或者I/O带宽来 相应地处理更大的工作负载。锁住某个共享的资源以获得独占式的访问这种做法会形成可伸缩性瓶颈――它使其他线程不能访问那个资源,即使有空闲的处理器可以 调用那些线程也无济于事。为了取得可伸缩性,我们必须消除或者减少我们对独占式资源锁的依赖。
同步的集合包装器以及早期的 Hashtable
和 Vector
类带来的更大的问题是,它们在单个的锁上进行同步。这意味着一次只有一个线程可以访问集合,如果有一个线程正在读一个 Map
,那么所有其他想要读或者写这个 Map
的线程就必须等待。最常见的 Map
操作, get()
和 put()
,可能比表面上要进行更多的处理――当遍历一个hash表的bucket以期找到某一特定的key时, get()
必须对大量的候选bucket调用 Object.equals()
。如果key类所使用的 hashCode()
函数不能将value均匀地分布在整个hash表范围内,或者存在大量的hash冲突,那么某些bucket链就会比其他的链长很多,而遍历一个长的hash链以及对该hash链上一定百分比的元素调用 equals()
是一件很慢的事情。在上述条件下,调用 get()
和 put()
的代价高的问题不仅仅是指访问过程的缓慢,而且,当有线程正在遍历那个hash链时,所有其他线程都被锁在外面,不能访问这个 Map
。
(哈希表根据一个叫做hash的数字关键字(key)将对象存储在bucket中。hash value是从对象中的值计算得来的一个数字。每个不同的hash value都会创建一个新的bucket。要查找一个对象,您只需要计算这个对象的hash value并搜索相应的bucket就行了。通过快速地找到相应的bucket,就可以减少您需要搜索的对象数量了。译者注)
get()
执行起来可能会占用大量的时间,而在某些情况下,前面已经作了讨论的有条件的线程安全性问题会让这个问题变得还要糟糕得多。 清单1 中演示的争用条件常常使得对单个集合的锁在单个操作执行完毕之后还必须继续保持一段较长的时间。如果您要在整个迭代期间都保持对集合的锁,那么其他的线程就会在锁外停留很长的一段时间,等待解锁。
Map
在服务器应用中最常见的应用之一就是实现一个 cache。
服务器应用可能需要缓存文件内容、生成的页面、数据库查询的结果、与经过解析的XML文件相关的DOM树,以及许多其他类型的数据。cache的主要用途 是重用前一次处理得出的结果以减少服务时间和增加吞吐量。cache工作负载的一个典型的特征就是检索大大多于更新,因此(理想情况下)cache能够提 供非常好的 get()
性能。不过,使用会妨碍性能的cache还不如完全不用cache。
如果使用 synchronizedMap
来实现一个cache,那么您就在您的应用程序中引入了一个潜在的可伸缩性瓶颈。因为一次只有一个线程可以访问 Map
,这些线程包括那些要从 Map
中取出一个值的线程以及那些要将一个新的 (key, value)
对插入到该map中的线程。
提高 HashMap
的并发性同时还提供线程安全性的一种方法是废除对整个表使用一个锁的方式,而采用对hash表的每个bucket都使用一个锁的方式(或者,更常见的是,使用一个锁池,每个锁负责保护几个bucket)。这意味着多个线程可以同时地访问一个 Map
的不同部分,而不必争用单个的集合范围的锁。这种方法能够直接提高插入、检索以及移除操作的可伸缩性。不幸的是,这种并发性是以一定的代价换来的――这使得对整个集合进行操作的一些方法(例如 size()
或 isEmpty()
)的实现更加困难,因为这些方法要求一次获得许多的锁,并且还存在返回不正确的结果的风险。然而,对于某些情况,例如实现cache,这样做是一个很好的折衷――因为检索和插入操作比较频繁,而 size()
和 isEmpty()
操作则少得多。
![]() ![]() |
![]()
|
util.concurrent
包中的 ConcurrentHashMap
类(也将出现在JDK 1.5中的 java.util.concurrent
包中)是对 Map
的线程安全的实现,比起 synchronizedMap
来,它提供了好得多的并发性。多个读操作几乎总可以并发地执行,同时进行的读和写操作通常也能并发地执行,而同时进行的写操作仍然可以不时地并发进行(相关的类也提供了类似的多个读线程的并发性,但是,只允许有一个活动的写线程) 。ConcurrentHashMap
被设计用来优化检索操作;实际上,成功的 get()
操作完成之后通常根本不会有锁着的资源。要在不使用锁的情况下取得线程安全性需要一定的技巧性,并且需要对Java内存模型(Java Memory Model)的细节有深入的理解。 ConcurrentHashMap
实现,加上 util.concurrent
包的其他部分,已经被研究正确性和线程安全性的并发专家所正视。在下个月的文章中,我们将看看 ConcurrentHashMap
的实现的细节。
ConcurrentHashMap
通过稍微地松弛它对调用者的承诺而获得了更高的并发性。检索操作将可以返回由最近完成的插入操作所插入的值,也可以返回在步调上是并发的插入操作所添加的值(但是决不会返回一个没有意义的结果)。由 ConcurrentHashMap.iterator()
返回的 Iterators
将每次最多返回一个元素,并且决不会抛出 ConcurrentModificationException
异常,但是可能会也可能不会反映在该迭代器被构建之后发生的插入操作或者移除操作。在对集合进行迭代时,不需要表范围的锁就能提供线程安全性。在任何不依赖于锁整个表来防止更新的应用程序中,可以使用 ConcurrentHashMap
来替代 synchronizedMap
或 Hashtable
。
上述改进使得 ConcurrentHashMap
能够提供比 Hashtable
高得多的可伸缩性,而且,对于很多类型的公用案例(比如共享的cache)来说,还不用损失其效率。
表 1对 Hashtable
和 ConcurrentHashMap
的可伸缩性进行了粗略的比较。在每次运行过程中, n 个线程并发地执行一个死循环,在这个死循环中这些线程从一个 Hashtable
或者 ConcurrentHashMap
中检索随机的key value,发现在执行 put()
操作时有80%的检索失败率,在执行操作时有1%的检索成功率。测试所在的平台是一个双处理器的Xeon系统,操作系统是Linux。数据显示了10,000,000次迭代以毫秒计的运行时间,这个数据是在将对 ConcurrentHashMap的
操作标准化为一个线程的情况下进行统计的。您可以看到,当线程增加到多个时, ConcurrentHashMap
的性能仍然保持上升趋势,而 Hashtable
的性能则随着争用锁的情况的出现而立即降了下来。
比起通常情况下的服务器应用,这次测试中线程的数量看上去有点少。然而,因为每个线程都在不停地对表进行操作,所以这与实际环境下使用这个表的更多数量的线程的争用情况基本等同。
表 1.Hashtable 与 ConcurrentHashMap在可伸缩性方面的比较
线程数 | ConcurrentHashMap | Hashtable |
1 | 1.00 | 1.03 |
2 | 2.59 | 32.40 |
4 | 5.58 | 78.23 |
8 | 13.21 | 163.48 |
16 | 27.58 | 341.21 |
32 | 57.27 | 778.41 |
![]() ![]() |
![]() |
在那些遍历操作大大地多于插入或移除操作的并发应用程序中,一般用 CopyOnWriteArrayList
类替代 ArrayList
。如果是用于存放一个侦听器(listener)列表,例如在AWT或Swing应用程序中,或者在常见的JavaBean中,那么这种情况很常见(相关的 CopyOnWriteArraySet
使用一个 CopyOnWriteArrayList
来实现 Set
接口)。
如果您正在使用一个普通的 ArrayList
来存放一个侦听器列表,那么只要该列表是可变的,而且可能要被多个线程访问,您就必须要么在对其进行迭代操作期间,要么在迭代前进行的克隆操作期间,锁定整个列表,这两种做法的开销都很大。当对列表执行会引起列表发生变化的操作时, CopyOnWriteArrayList
并不是为列表创建一个全新的副本,它的迭代器肯定能够返回在迭代器被创建时列表的状态,而不会抛出 ConcurrentModificationException
。在对列表进行迭代之前不必克隆列表或者在迭代期间锁定列表,因为迭代器所看到的列表的副本是不变的。换句话说, CopyOnWriteArrayList
含有对一个不可变数组的一个可变的引用,因此,只要保留好那个引用,您就可以获得不可变的线程安全性的好处,而且不用锁定列表。
![]() ![]() |
![]() |
同步的集合类 Hashtable
和 Vector
,以及同步的包装器类 Collections.synchronizedMap
和 Collections.synchronizedList
,为 Map
和 List
提供了基本的有条件的线程安全的实现。然而,某些因素使得它们并不适用于具有高度并发性的应用程序中――它们的集合范围的单锁特性对于可伸缩性来说是一个障碍,而且,很多时候还必须在一段较长的时间内锁定一个集合,以防止出现 ConcurrentModificationException
s异常。 ConcurrentHashMap
和 CopyOnWriteArrayList
实现提供了更高的并发性,同时还保住了线程安全性,只不过在对其调用者的承诺上打了点折扣。 ConcurrentHashMap
和 CopyOnWriteArrayList
并不是在您使用 HashMap
或 ArrayList
的任何地方都一定有用,但是它们是设计用来优化某些特定的公用解决方案的。许多并发应用程序将从对它们的使用中获得好处。
相关推荐
相较于传统的`HashMap`,`ConcurrentHashMap`能够支持高并发环境下的多线程读写操作。本文将深入探讨`ConcurrentHashMap`的关键实现细节,包括其核心设计思想——锁分离(Lock Stripping),以及如何通过不可变性和...
2.4 hashtable和hashmap的区别 - Hashtable是古老的集合类,HashMap在性能上有优化。 2.5 HashMap和ConcurrentHashMap区别 - ConcurrentHashMap是在HashMap基础上增加了线程安全机制。 2.6 ConcurrentHashMap和...
全国大学生智能汽车竞赛自2006年起,由教育部高等教育司委托高等学校自动化类教学指导委员会举办,旨在加强学生实践、创新能力和培养团队精神的一项创意性科技竞赛。该竞赛至今已成功举办多届,吸引了众多高校学生的积极参与,此文件为智能车竞赛介绍
字卡v4.3.4 原版 三种UI+关键字卡控制+支持获取用户信息+支持强制关注 集卡模块从一开始的版本到助力版本再到现在的新规则版本。 集卡模块难度主要在于 如何控制各种不同的字卡组合 被粉丝集齐的数量。 如果不控制那么一定会出现超过数量的粉丝集到指定的字卡组合,造成奖品不够的混乱,如果大奖价值高的话,超过数量的粉丝集到大奖后,就造成商家的活动费用超支了。我们冥思苦想如何才能限制集到指定字卡组合的粉丝数,后我们想到了和支付宝一样的选一张关键字卡来进行规则设置的方式来进行限制,根据奖品所需的关键字卡数,设定规则就可以控制每种奖品所需字卡组合被粉丝集到的数量,规则可以在活动进行中根据需要进行修改,活动规则灵活度高。新版的集卡规则,在此次政府发布号的活动中经受了考验,集到指定字卡组合的粉丝没有超出规则限制。有了这个规则限制后,您无需盯着活动,建好活动后就无人值守让活动进行就行了,您只需要时不时来看下蹭蹭上涨的活动数据即可。 被封? 无需担心,模块内置有防封功能,支持隐藏主域名,显示炮灰域名,保护活动安全进行。 活动准备? 只需要您有一个认证服务号即可,支持订阅号借用认证服务号来做活动。如果您
出口设备线体程序详解:PLC通讯下的V90控制与开源FB284工艺对象实战指南,出口设备线体程序详解:PLC通讯与V90控制集成,工艺对象与FB284协同工作,开源学习V90控制技能,出口设备1200线体程序,多个plc走通讯,内部有多个v90,采用工艺对象与fb284 共同控制,功能快全部开源,能快速学会v90的控制 ,出口设备; 1200线体程序; PLC通讯; 多个V90; 工艺对象; FB284; 功能开源; V90控制。,V90工艺控制:开源功能快,快速掌握1200线体程序与PLC通讯
基于Arduino与DAC8031的心电信号模拟器资料:心电信号与正弦波的双重输出应用方案,Arduino与DAC8031心电信号模拟器:生成心电信号与正弦波输出功能详解,基于arduino +DAC8031的心电信号模拟器资料,可输出心电信号,和正弦波 ,基于Arduino;DAC8031;心电信号模拟器;输出心电信号;正弦波输出;模拟器资料,基于Arduino与DAC8031的心电信号模拟器:输出心电与正弦波
MATLAB口罩检测的基本流程 图像采集:通过摄像头或其他图像采集设备获取包含面部的图像。 图像预处理:对采集到的图像进行灰度化、去噪、直方图均衡化等预处理操作,以提高图像质量,便于后续的人脸检测和口罩检测。 人脸检测:利用Haar特征、LBP特征等经典方法或深度学习模型(如MTCNN、FaceBoxes等)在预处理后的图像中定位人脸区域。 口罩检测:在检测到的人脸区域内,进一步分析是否佩戴口罩。这可以通过检测口罩的边缘、纹理等特征,或使用已经训练好的口罩检测模型来实现。 结果输出:将检测结果以可视化方式展示,如在图像上标注人脸和口罩区域,或输出文字提示是否佩戴口罩。
1、文件内容:kernel-debug-devel-3.10.0-1160.119.1.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/kernel-debug-devel-3.10.0-1160.119.1.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊
该文档提供了一个关于供应链管理系统开发的详细指南,重点介绍了项目安排、技术实现和框架搭建的相关内容。 文档分为以下几个关键部分: 项目安排:主要步骤包括搭建框架(1天),基础数据模块和权限管理(4天),以及应收应付和销售管理(5天)。 供应链概念:供应链系统的核心流程是通过采购商品放入仓库,并在销售时从仓库提取商品,涉及三个主要订单:采购订单、销售订单和调拨订单。 大数据的应用:介绍了数据挖掘、ETL(数据抽取)和BI(商业智能)在供应链管理中的应用。 技术实现:讲述了DAO(数据访问对象)的重用、服务层的重用、以及前端JS的继承机制、jQuery插件开发等技术细节。 系统框架搭建:包括Maven环境的配置、Web工程的创建、持久化类和映射文件的编写,以及Spring配置文件的实现。 DAO的需求和功能:供应链管理系统的各个模块都涉及分页查询、条件查询、删除、增加、修改操作等需求。 泛型的应用:通过示例说明了在Java语言中如何使用泛型来实现模块化和可扩展性。 文档非常技术导向,适合开发人员参考,用于构建供应链管理系统的架构和功能模块。
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
C#与VB实现欧姆龙PLC的Fins TCP通信案例源码:调用动态链接库进行数据读写,定时器与计数器数据区的简洁读写操作示例,C#与VB实现欧姆龙PLC的Fins TCP通信案例源码:调用动态链接库进行读写操作,涵盖定时器计数器数据区学习案例,C#欧姆龙plc Fins Tcp通信案例上位机源码,有c#和VB的Demo,c#上位机和欧姆龙plc通讯案例源码,调用动态链接库,可以实现上位机的数据连接,可以简单实现D区W区定时器计数器等数据区的读写,是一个非常好的学习案例 ,C#; 欧姆龙PLC; Fins Tcp通信; 上位机源码; 动态链接库; 数据连接; D区W区读写; 定时器计数器; 学习案例,C#实现欧姆龙PLC Fins Tcp通信上位机源码,读写数据区高效学习案例
可调谐石墨烯超材料吸收体的FDTD仿真模拟研究报告:吸收光谱的化学势调节策略与仿真源文件解析,可调谐石墨烯超材料吸收体:化学势调节光谱的FDTD仿真模拟研究,可调谐石墨烯超材料吸收体FDTD仿真模拟 【案例内容】该案例提供了一种可调谐石墨烯超材料吸收体,其吸收光谱可以通过改变施加于石墨烯的化学势来进行调节。 【案例文件】仿真源文件 ,可调谐石墨烯超材料吸收体; FDTD仿真模拟; 化学势调节; 仿真源文件,石墨烯超材料吸收体:FDTD仿真调节吸收光谱案例解析
RBF神经网络控制仿真-第二版
松下PLC与威纶通触摸屏转盘设备控制:FPWINPRO7与EBPRO智能编程与宏指令应用,松下PLC与威纶通触摸屏转盘设备控制解决方案:FPWINPRO7与EBPRO协同工作,实现多工位转盘加工与IEC编程模式控制,松下PLC+威纶通触摸屏的转盘设备 松下PLC工程使用程序版本为FPWINPRO7 7.6.0.0版本 威纶通HMI工程使用程序版本为EBPRO 6.07.02.410S 1.多工位转盘加工控制。 2.国际标准IEC编程模式。 3.触摸屏宏指令应用控制。 ,松下PLC; 威纶通触摸屏; 转盘设备控制; 多工位加工控制; IEC编程模式; 触摸屏宏指令应用,松下PLC与威纶通HMI联控的转盘设备控制程序解析
基于循环神经网络(RNN)的多输入单输出预测模型(适用于时间序列预测与回归分析,需Matlab 2021及以上版本),基于循环神经网络(RNN)的多输入单输出预测模型(matlab版本2021+),真实值与预测值对比,多种评价指标与线性拟合展示。,RNN预测模型做多输入单输出预测模型,直接替数据就可以用。 程序语言是matlab,需求最低版本为2021及以上。 程序可以出真实值和预测值对比图,线性拟合图,可打印多种评价指标。 PS:以下效果图为测试数据的效果图,主要目的是为了显示程序运行可以出的结果图,具体预测效果以个人的具体数据为准。 2.由于每个人的数据都是独一无二的,因此无法做到可以任何人的数据直接替就可以得到自己满意的效果。 这段程序主要是一个基于循环神经网络(RNN)的预测模型。它的应用领域可以是时间序列预测、回归分析等。下面我将对程序的运行过程进行详细解释和分析。 首先,程序开始时清空环境变量、关闭图窗、清空变量和命令行。然后,通过xlsread函数导入数据,其中'数据的输入'和'数据的输出'是两个Excel文件的文件名。 接下来,程序对数据进行归一化处理。首先使用ma
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
旅游管理系统中的功能模块主要是实现管理员;首页、个人中心、用户管理、旅游方案管理、旅游购买管理、系统管理,用户;首页、个人中心、旅游方案管理、旅游购买管理、我的收藏管理。前台首页;首页、旅游方案、旅游资讯、个人中心、后台管理等功能。经过认真细致的研究,精心准备和规划,最后测试成功,系统可以正常使用。分析功能调整与旅游管理系统实现的实际需求相结合,讨论了Java开发旅游管理系统的使用。 从上面的描述中可以基本可以实现软件的功能: 1、开发实现旅游管理系统的整个系统程序; 2、管理员;首页、个人中心、用户管理、旅游方案管理、旅游购买管理、系统管理等。 3、用户:首页、个人中心、旅游方案管理、旅游购买管理、我的收藏管理。 4、前台首页:首页、旅游方案、旅游资讯、个人中心、后台管理等相应操作; 5、基础数据管理:实现系统基本信息的添加、修改及删除等操作,并且根据需求进行交流查看及回复相应操作。
Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构,Simulink建模,MPPT最大功率点追踪,扰动观察法采用功率反馈方式,若ΔP>0,说明电压调整的方向正确,可以继续按原方向进行“干扰”;若ΔP<0,说明电压调整的方向错误,需要对“干扰”的方向进行改变。 ,Boost升压;光伏并网结构;Simulink建模;MPPT最大功率点追踪;扰动观察法;功率反馈;电压调整方向。,光伏并网结构中Boost升压MPPT控制策略的Simulink建模与功率反馈扰动观察法
运行GUI版本,可二开
Deepseek相关主题资源及行业影响