一个更极端的例子是,把多维数组分成多个一维数组。
int数组比Integer数组好,这也概括了一个基本事实,两个平行的int数组比 (int,int)对象数组性能要好很多。同理,这试用于所有基本类型的组合。 如果你想用一种容器存储(Foo,Bar)元组,尝试使用两个单独的Foo[]数组和Bar[]数组,一定比(Foo,Bar)数组效率更高。(也有例外的情况,就是当你建立一个API,让别人调用它的时候。这时候你要注重对API接口的设计而牺牲一点儿速度。当然在API的内部,你仍要尽可能的提高代码的效率)
总体来说,就是避免创建短命的临时对象。减少对象的创建就能减少垃圾收集,进而减少对用户体验的影响。
使用本地方法
当你在处理字串的时候,不要吝惜使用String.indexOf(), String.lastIndexOf()等特殊实现的方法(specialty methods)。这些方法都是使用C/C++实现的,比起Java循环快10到100倍。
使用实类比接口好
假设你有一个HashMap对象,你可以将它声明为HashMap或者Map:
Map myMap1 = new HashMap();
HashMap myMap2 = new HashMap();
哪个更好呢?
按照传统的观点Map会更好些,因为这样你可以改变他的具体实现类,只要这个类继承自Map接口。传统的观点对于传统的程序是正确的,但是它并不适合嵌入式系统。调用一个接口的引用会比调用实体类的引用多花费一倍的时间。
如果HashMap完全适合你的程序,那么使用Map就没有什么价值。如果有些地方你不能确定,先避免使用 Map,剩下的交给IDE提供的重构功能好了。(当然公共API是一个例外:一个好的API常常会牺牲一些性能)
用静态方法比虚方法好
如果你不需要访问一个对象的成员变量,那么请把方法声明成static。静态方法执行的更快,因为它可以被直接调用而不需要一个虚函数表。另外你也可以通过声明体现出这个函数的调用不会改变对象的状态。
不用getter和setter
在很多本地语言如C++中,都会使用getter(比如:i = getCount())来避免直接访问成员变量(i = mCount)。在C++中这是一个非常好的习惯,因为编译器能够内联访问,如果你需要约束或调试变量,你可以在任何时候添加代码。
在Android上,这就不是个好主意了。虚方法的开销比直接访问成员变量大得多。在通用的接口定义中,可以依照OO的方式定义getters和setters,但是在一般的类中,你应该直接访问变量。
将成员变量缓存到本地
访问成员变量比访问本地变量慢得多,下面一段代码:
view sourceprint?
for (int i = 0; i < this.mCount; i++)
dumpItem(this.mItems);
最好改成这样:
view sourceprint?
int count = this.mCount;
Item[] items = this.mItems;
for (int i = 0; i < count; i++)
dumpItems(items);
(使用”this”是为了表明这些是成员变量)
另一个相似的原则是:永远不要在for的第二个条件中调用任何方法。如下面方法所示,在每次循环的时候都会调用getCount()方法,这样做比你在一个int先把结果保存起来开销大很多。
view sourceprint?
for (int i = 0; i < this.getCount(); i++)
dumpItems(this.getItem(i));
同样如果你要多次访问一个变量,也最好先为它建立一个本地变量,例如:
view sourceprint?
protected void drawHorizontalScrollBar(Canvas canvas, int width, int height) {
if (isHorizontalScrollBarEnabled()) {
int size = mScrollBar.getSize(false);
if (size <= 0) {
size = mScrollBarSize;
}
mScrollBar.setBounds(0, height - size, width, height);
mScrollBar.setParams(
computeHorizontalScrollRange(),
computeHorizontalScrollOffset(),
computeHorizontalScrollExtent(), false);
mScrollBar.draw(canvas);
}
}}
这里有4次访问成员变量mScrollBar,如果将它缓存到本地,4次成员变量访问就会变成4次效率更高的栈变量访问。
另外就是方法的参数与本地变量的效率相同。
使用常量
让我们来看看这两段在类前面的声明:
static int intVal = 42;
static String strVal = "Hello, world!";
必以其会生成一个叫做clinit的初始化类的方法,当类第一次被使用的时候这个方法会被执行。方法会将42赋给intVal,然后把一个指向类中常量表的引用赋给strVal。当以后要用到这些值的时候,会在成员变量表中查找到他们。
下面我们做些改进,使用“final”关键字:
static final int intVal = 42;
static final String strVal = "Hello, world!";
现在,类不再需要clinit方法,因为在成员变量初始化的时候,会将常量直接保存到类文件中。用到intVal的代码被直接替换成42,而使用 strVal的会指向一个字符串常量,而不是使用成员变量。
将一个方法或类声明为”final”不会带来性能的提升,但是会帮助编译器优化代码。举例说,如果编译器知道一个”getter”方法不会被重载,那么编译器会对其采用内联调用。
你也可以将本地变量声明为”final”,同样,这也不会带来性能的提升。使用”final”只能使本地变量看起来更清晰些(但是也有些时候这是必须的,比如在使用匿名内部类的时候)。
谨慎使用foreach
foreach可以用在实现了Iterable接口的集合类型上。foreach会给这些对象分配一个iterator,然后调用 hasNext()和next()方法。你最好使用foreach处理ArrayList对象,但是对其他集合对象,foreach相当于使用 iterator。
下面展示了foreach一种可接受的用法:
view sourceprint?
class Foo {
int mSplat;
static Foo mArray[] = new Foo[27];
public static void zero() {
int sum = 0;
for (int i = 0; i < mArray.length; i++) {
sum += mArray.mSplat;
}
}
public static void one() {
int sum = 0;
Foo[] localArray = mArray;
int len = localArray.length;
for (int i = 0; i < len; i++) {
sum += localArray.mSplat;
}
}
public static void two() {
int sum = 0;
for (Foo a: mArray) {
sum += a.mSplat;
}
}
}
在zero()中,每次循环都会访问两次静态成员变量,取得一次数组的长度。
在one()中,将所有成员变量存储到本地变量。
two()使用了在java1.5中引入的foreach语法。编译器会将对数组的引用和数组的长度保存到本地变量中,这对访问数组元素非常好。但是编译器还会在每次循环中产生一个额外的对本地变量的存储操作(对变量a的存取)这样会比one()多出4个字节,速度要稍微慢一些。
综上所述:foreach语法在运用于array时性能很好,但是运用于其他集合对象时要小心,因为它会产生额外的对象。
避免使用枚举
枚举变量非常方便,但不幸的是它会牺牲执行的速度和并大幅增加文件体积。例如:
public class Foo {
public enum Shrubbery { GROUND, CRAWLING, HANGING }
}
会产生一个900字节的.class文件(Foo$Shubbery.class)。在它被首次调用时,这个类会调用初始化方法来准备每个枚举变量。每个枚举项都会被声明成一个静态变量,并被赋值。然后将这些静态变量放在一个名为”$VALUES”的静态数组变量中。而这么一大堆代码,仅仅是为了使用三个整数。
这样:
Shrubbery shrub = Shrubbery.GROUND;
会引起一个对静态变量的引用,如果这个静态变量是final int,那么编译器会直接内联这个常数。
一方面说,使用枚举变量可以让你的API更出色,并能提供编译时的检查。所以在通常的时候你毫无疑问应该为公共API选择枚举变量。但是当性能方面有所限制的时候,你就应该避免这种做法了。
有些情况下,使用ordinal()方法获取枚举变量的整数值会更好一些,举例来说,将:
view sourceprint?
for (int n = 0; n < list.size(); n++) {
if (list.items[n].e == MyEnum.VAL_X)
// do stuff 1
else if (list.items[n].e == MyEnum.VAL_Y)
// do stuff 2
}
替换为:
view sourceprint?
int valX = MyEnum.VAL_X.ordinal();
int valY = MyEnum.VAL_Y.ordinal();
int count = list.size();
MyItem items = list.items();
for (int n = 0; n < count; n++)
{
int valItem = items[n].e.ordinal();
if (valItem == valX)
// do stuff 1
else if (valItem == valY)
// do stuff 2
}
会使性能得到一些改善,但这并不是最终的解决之道。
将与内部类一同使用的变量声明在包范围内
请看下面的类定义:
view sourceprint?
public class Foo {
private int mValue;
public void run() {
Inner in = new Inner();
mValue = 27;
in.stuff();
}
private void doStuff(int value) {
System.out.println("Value is " + value);
}
private class Inner {
void stuff() {
Foo.this.doStuff(Foo.this.mValue);
}
}
}
这其中的关键是,我们定义了一个内部类(Foo$Inner),它需要访问外部类的私有域变量和函数。这是合法的,并且会打印出我们希望的结果”Value is 27″。
问题是在技术上来讲(在幕后)Foo$Inner是一个完全独立的类,它要直接访问Foo的私有成员是非法的。要跨越这个鸿沟,编译器需要生成一组方法:
view sourceprint?
/*package*/ static int Foo.access$100(Foo foo) {
return foo.mValue;
}
/*package*/ static void Foo.access$200(Foo foo, int value) {
foo.doStuff(value);
}
内部类在每次访问”mValue”和”doStuff”方法时,都会调用这些静态方法。就是说,上面的代码说明了一个问题,你是在通过接口方法访问这些成员变量和函数而不是直接调用它们。在前面我们已经说过,使用接口方法(getter、setter)比直接访问速度要慢。所以这个例子就是在特定语法下面产生的一个“隐性的”性能障碍。
通过将内部类访问的变量和函数声明由私有范围改为包范围,我们可以避免这个问题。这样做可以让代码运行更快,并且避免产生额外的静态方法。(遗憾的是,这些域和方法可以被同一个包内的其他类直接访问,这与经典的OO原则相违背。因此当你设计公共API的时候应该谨慎使用这条优化原则)
避免使用浮点数
在奔腾CPU出现之前,游戏设计者做得最多的就是整数运算。随着奔腾的到来,浮点运算处理器成为了CPU内置的特性,浮点和整数配合使用,能够让你的游戏运行得更顺畅。通常在桌面电脑上,你可以随意的使用浮点运算。
但是非常遗憾,嵌入式处理器通常没有支持浮点运算的硬件,所有对”float”和”double”的运算都是通过软件实现的。一些基本的浮点运算,甚至需要毫秒级的时间才能完成。
甚至是整数,一些芯片有对乘法的硬件支持而缺少对除法的支持。这种情况下,整数的除法和取模运算也是有软件来完成的。所以当你在使用哈希表或者做大量数学运算时一定要小心谨慎。
相关推荐
【Android 代码优化技巧】 Android 代码优化是一个关键的领域,尤其对于提升应用程序的性能和用户体验至关重要。在Android开发中,我们需要注意以下几点: 1. **避免过多对象创建**:对象创建需要分配内存,即便...
以下是对"Android代码优化"这一主题的详细阐述: 1. **内存优化** - **避免内存泄漏**:检查并消除静态引用、单例模式、匿名内部类以及生命周期不匹配的持有者可能导致的内存泄漏。 - **减少内存分配**:避免频繁...
Android 开发代码优化指南 Android 开发代码优化对于占用资源的系统,有两条基本原则:不要做不必要的事,不要分配不必要的内存。所有下面的内容都遵照这两个原则。 避免创建短命的临时对象 在 Android 开发中,...
总的来说,Android代码优化是一个持续的过程,涵盖了许多方面,包括但不限于性能、安全、可用性、兼容性和代码质量。通过使用Analyze菜单和Android Lint工具,开发者可以系统地检查和改进代码,从而提升应用的整体...
【Android性能优化】是Android开发中的重要环节,涵盖了多个关键领域,包括ANR问题解析、crash监控方案、启动速度与执行效率优化、内存优化、耗电优化、网络传输与数据存储优化以及APK大小优化。 **ANR问题解析**是...
拥抱变化,让我们冲现在开始吧,上一篇文章《Android也架构之二:单例模式访问网络》中,我们学会用了单例模式,单例模式一般解决的是和程序相关的问题,和业务逻辑无关,今天开始,我们就开始学习和业务相关的设计...
总的来说,优化Android代码不仅涉及减少内存泄漏和提高资源利用率,还应考虑代码的可读性、可维护性和效率。通过合理使用`Context`、避免静态变量造成的内存问题以及及时释放资源,开发者可以显著提高应用程序的性能...
`Android优化布局文件的代码例子`提供了关于如何有效利用ViewStub、style和Theme等特性来改进布局管理的实践示例。以下将详细讲解这些知识点及其应用。 首先,我们来看`ViewStub`。`ViewStub`是一个轻量级的View,...
《深入剖析Android优化大师源代码》 在移动设备领域,Android系统因其开源、灵活的特点深受开发者喜爱。然而,随着应用程序的复杂性和用户需求的不断提升,性能优化成为了Android开发中的重要一环。"Android优化...
awesome-android-performance This is a list of awesome Android tutorials, videos and tools for performance optimization View Google Official Videos Double Layout Taxation Android Performance Patterns...
《深入解析Java编写的安卓系统优化软件源代码》 在当今移动互联网时代,安卓系统作为全球最广泛使用的智能手机操作系统之一,其性能优化显得尤为重要。Java作为一种跨平台的编程语言,被广泛应用于安卓应用开发,其...
最后,文档还讨论了Android代码优化技术、内存泄露的检测和优化方法、代码混淆技术以及加解密技巧,这些都是构建高效、安全Android应用的重要环节。 整体而言,这份Android学习系列教程实例文档是Android开发者从...
《深入解析Android 15源代码》 在移动操作系统领域,Android一直占据着重要的地位,其开源特性使得开发者能够深入理解系统内部运作机制,从而进行更高效、更个性化的开发。"android-15源代码"是Android SDK的一个...
首先需要明确的是,提供的文件内容与Android系统优化主题无关,而是关于提供PDF电子书代找服务的介绍。这与标题“Android系统优化从入门到精通_胡郁”描述的内容不相符。因此,我将仅就Android系统优化进行知识的...
- **Android Drawable Importer**:虽然非代码高亮插件,但能提升Android开发效率,自动导入和优化图片资源。 4. **安装与配置插件**: - Android Studio允许通过内置插件市场安装,`File` -> `Settings` -> `...
- 代码优化:源码中可能会包含如何减少CPU使用率,优化内存分配,避免空指针异常,以及合理使用线程和异步处理的实例。 - 数据库优化:优化大师可能使用SQLite数据库存储数据,源码中会展示如何高效查询、更新和...
Android Studio基于IntelliJ IDEA,提供了强大的代码编辑、调试、构建和性能优化工具。它支持Gradle构建系统,允许灵活的项目配置和依赖管理。通过XML布局文件和Java/Kotlin代码的结合,开发者可以构建复杂的用户...