Introduction
Pentaho Metadata is a feature of the Pentaho BI Platform designed to make it easier for users to access information in business terms.
With Pentaho's open source metadata capabilities, administrators can define a layer of abstraction that presents database information to business users in familiar business terms. Administrators identify relationships between tables in the database, create business-language definitions for complex or cryptic database tables and columns, set security parameters to limit data access to appropriate users, specify default formatting for data fields, and provide additional translations for business terms for multi-lingual deployments. Business users can then use Pentaho's new ad hoc query capabilities to choose the specific elements they would like to include in a given report, such as order quantities and total spending by customer grouped by region. Then SQL required to retrieve the data is generated automatically.
Scope and Usage of the Metadata Layer:
1. Metadata input from the database, as well as user-defined metadata, is defined using the Pentaho Metadata Editor(PME) and stored in the metadata repository
2. Metadata can be exported from the repository and stored in the form of .xmi files, or in a database. The metadata is associated with a Pentaho solution on the Pentaho server, where it can be used as a resource for metadata-based reporting services
3. Using the Pentaho report design tools, end users can create reports on the metadata. This allows report to be built without knowledge of the physical details of the underlying database, and without any knowledge of SQL. Instead, the report contains a high-level specification of the query result, which is defined using a graphical user interface
4. When running reports based on Pentaho metadata, the reporting engine interprets the report. Query specifications are stored in the report in a format called Metadata Query Language(MQL), which is resolved against the metadata. At this point, the corresponding SQL is generated and sent to the database. Beyond this point, report processing is quite similar to "normal" SQL-based reporting. The database responds to the query by sending a data result, which is rendered as report output.
Business Model Overview
Pentaho Metadata Terminology
The metadata business model is a actually one major component in a Pentaho metadata domain. The domain encapsulates both the physical descriptions of your database objects and the logical model(the business model), the abstract representation of the database.
Business objects and relationships within the Pentaho metadata domain:
The Physical Layer of a Pentaho domain encompasses connections, physical tables and physical columns.
In the Abstract Business Layer, you have business tables, business columns, and business relationships.
The Business View is the part of business model that applications will operate against, and end-users will see. The Business View is nothing more than "buckets"(called categories) for you to re-arrange and re-organize your business columns in a fashion that makes sense to the consumers of the data.
The business model encompasses the Abstract Business Layer and the Business View.
Common Warehouse Model(CWM)
The Common Warehouse Metamodel(CWM) is a specification that descriptions metadata interchange among data warehousing, business intelligence, knowledge management and portal technologies. The Pentaho Metadata Layer is based on the
CWM Specification of the Object Management Group and is able to generate SQL from a query written in the Metadata Query Language(MQL). The MQL query in turn is created by an end user by building the desired selection from a set of objects exposed in a metadata model.
CWM is based on three standards:
1. UML - Unified Modeling Language, and OMG modeling standard
2. MOF - Meta Object Facility, an OMG metamodeling and metadata repository standard
3. XMI - XML Metadata Interchange, an OMG metadata interchange standard
Pentaho Metadata Projects
Pentaho Metadata consists of three sub-projects:
1.
pentaho-metadata, core metadata engine
2.
pentaho-mql-editor, a SWT tool for building an MQL query
3.
pentaho-metadata-editor, tool for building metadata models
The Report Designer and BI Platform also contain client side metadata code that demonstrate using metadata in apps.
Pentaho Metadata MQL Schema
MQL is the syntax Pentaho Metadata uses for generating SQL queries based off of metadata. Normally a user would generate MQL via Pentaho's Design Studio or Pentaho's Metadata Editor.
MQL XML format:
<mql> - top level element for mql query
<domain_type> - text element that contains the domain type, currently only "relational" is supported
<domain_id> - text element that contains the domain id to query
<model_id> - text element that contains the model id to query
<model_name> - not required - text element with the model name
<parameters> - not required - element that contains a list of parameters for the query
<parameter> - element that contains information about an individual parameter
<name> - the name of the parameter
<type> - the data type of the parameter, valid values include boolean, numeric
<defaultValue> - the default value of the parameter as a string
<selections> - element that contains a list of business column selections
<selection> - business column selection element
<table> - text element that contains the id of the business table to select
<column> - text element that contains the id of the business column to select
<aggregation> - text element that contains aggregate type
<constraints> - element that contains a list of constraints for the MQL query
<constraint> - constraint container element
<operator> - text element that describes how to join the constraint to the query
<condition> - text element that contains an MQL formula
<orders> - element that contains a list of business columns to order by
<order> - order container element
<direction> - text element containing either "sac" or "desc"
<table_id> - text element containing the id of the business table to order by
<column_id> - text element containing the id of the business column to order by
<aggregation> - text element that contains aggregate type
Pentaho Metadata Editor
Pentaho Metadata Editor documentation
- 大小: 138.7 KB
- 大小: 93.3 KB
分享到:
相关推荐
### Pentaho元数据编辑器学习知识点详解 #### 一、Pentaho元数据编辑器基础知识概览 **1.1 连接(Connection)** - **定义**: 连接是Pentaho元数据模型中用于建立与数据库通信的基础元素。它是所有其他实体(如实...
### Pentaho Metadata Editor 部分术语讲解 #### 一、元数据(Metadata Terminology) 元数据是指关于数据的数据,通常用于描述数据属性的信息。在Pentaho Metadata Editor (PME) 中,元数据术语非常关键,因为它...
### Pentaho Metadata Editor指南知识点详解 #### 一、公共数据仓库模型CWM™(Common Warehouse Metamodel) **定义与作用:** 公共数据仓库模型(Common Warehouse Metamodel, CWM™)是一项规范,它定义了数据...
【标题】"Pentaho常见问题小结"揭示了Pentaho在实际使用过程中遇到的一些典型问题及其解决方案。Pentaho是一款开源的企业级商业智能(BI)平台,它集成了数据提取、转换、加载(ETL)、数据分析和报告等功能,为用户...
metastore-8.3.0.0-371.jar pentaho需要的jar
* Kettle:Pentaho Metadata Editor (PME) * Saiku + Schema Workbench:Fixed report:Pentaho Report Designer Report tools Ad-hoc report:Saiku * Dashboard:CDE * Data Mining:BI platform R language Weka ...
2. **Pentaho Metadata库**:如`pentaho-metadata.jar`,用于处理数据模型和元数据。 3. **Pentaho Common库**:`pentaho-commons.jar`等,提供通用服务和功能。 4. **Pentaho Plugin Framework**:`pentaho-...
Pentaho Metadata Editor则更多地关注于ETL(提取、转换、加载)过程中的元数据管理,而WhereHows则提供了一个全面的数据发现解决方案,涵盖从数据源到数据消费的全过程。 在使用WhereHows时,通常需要进行以下步骤...
2. **存储管理**:使用专业工具如Pentaho Metadata进行存储管理,对接不同系统的元数据,进行标注和完善。 **四、元数据的应用** 1. **对比分析**:在开发、测试、生产环境间对比元数据,能及时发现潜在问题,减少...
在实施元数据管理时,需要对技术元数据进行采集和整合,建立元模型,通过工具如Pentaho Metadata进行存储和管理。同时,业务元数据的梳理则需要深入理解业务系统,从交易、报表、表格等多方面提取关键信息。 元数据...
kettle-core-7.1.0.0-12.jar kettle-dbdialog-7.1.0.0-12.jar kettle-engine-7.1.0.0-12.jar pentaho-metadata-7.1.0.0-12.jar
5. **Metadata Editor**:允许用户为现有的数据源添加自定义元数据层,使得业务用户更容易理解和使用数据。 6. **Schema Workbench**:帮助用户创建 ROLAP 架构的图形工具,是数据分析前的数据准备阶段的关键组件。...
3. **元数据(Metadata)**: - Pentaho Kettle使用元数据来描述数据源、字段和数据转换的过程。元数据的理解和管理是高效使用PDI的关键。 4. **数据输入与输出**: - 数据可以来自各种源,如数据库、文件系统、...
7. **Pentaho_Metadata_Editor.pdf**:Pentaho 元数据编辑器是设计和管理数据模型的工具,它帮助用户定义和组织数据结构。文档将解释如何使用这个工具来创建和编辑元数据,这对于确保数据的准确性和一致性至关重要。...