- 浏览: 2687433 次
- 性别:
- 来自: 北京
文章分类
最新评论
-
80后的童年2:
深入浅出MongoDB应用实战开发网盘地址:https://p ...
MongoDB入门教程 -
shliujing:
楼主在不是精通java和php的前提下,请不要妄下结论。
PHP、CakePHP哪凉快哪呆着去 -
安静听歌:
希望可以一给一点点注释
MySQL存储过程之代码块、条件控制、迭代 -
qq287767957:
PHP是全宇宙最强的语言!
PHP、CakePHP哪凉快哪呆着去 -
rryymmoK:
深入浅出MongoDB应用实战开发百度网盘下载:链接:http ...
MongoDB入门教程
Θ(n^2)
1, Bubble sort
2, Selection sort
3, Insertion sort
4, Shell sort
Θ(n*logn)
1, Merge sort
2, Heap sort
3, Quick sort
Θ(n)
1, Counting sort
2, Radix sort
3, Bucket sort
1, Bubble sort
def bubble_sort(a) (a.size-2).downto(0) do |i| (0..i).each do |j| a[j], a[j+1] = a[j+1], a[j] if a[j] > a[j+1] end end return a end
2, Selection sort
def selection_sort(a) b = [] a.size.times do |i| min = a.min b << min a.delete_at(a.index(min)) end return b end
3, Insertion sort
def insertion_sort(a) a.each_with_index do |el,i| j = i - 1 while j >= 0 break if a[j] <= el a[j + 1] = a[j] j -= 1 end a[j + 1] = el end return a end
4, Shell sort
def shell_sort(a) gap = a.size while(gap > 1) gap = gap / 2 (gap..a.size-1).each do |i| j = i while(j > 0) a[j], a[j-gap] = a[j-gap], a[j] if a[j] <= a[j-gap] j = j - gap end end end return a end
Θ(n*logn)
1, Merge sort
def merge(l, r) result = [] while l.size > 0 and r.size > 0 do if l.first < r.first result << l.shift else result << r.shift end end if l.size > 0 result += l end if r.size > 0 result += r end return result end def merge_sort(a) return a if a.size <= 1 middle = a.size / 2 left = merge_sort(a[0, middle]) right = merge_sort(a[middle, a.size - middle]) merge(left, right) end
2, Heap sort
def heapify(a, idx, size) left_idx = 2 * idx + 1 right_idx = 2 * idx + 2 bigger_idx = idx bigger_idx = left_idx if left_idx < size && a[left_idx] > a[idx] bigger_idx = right_idx if right_idx < size && a[right_idx] > a[bigger_idx] if bigger_idx != idx a[idx], a[bigger_idx] = a[bigger_idx], a[idx] heapify(a, bigger_idx, size) end end def build_heap(a) last_parent_idx = a.length / 2 - 1 i = last_parent_idx while i >= 0 heapify(a, i, a.size) i = i - 1 end end def heap_sort(a) return a if a.size <= 1 size = a.size build_heap(a) while size > 0 a[0], a[size-1] = a[size-1], a[0] size = size - 1 heapify(a, 0, size) end return a end
3, Quick sort
def quick_sort(a) (x=a.pop) ? quick_sort(a.select{|i| i <= x}) + [x] + quick_sort(a.select{|i| i > x}) : [] end
Θ(n)
1, Counting sort
def counting_sort(a) min = a.min max = a.max counts = Array.new(max-min+1, 0) a.each do |n| counts[n-min] += 1 end (0...counts.size).map{|i| [i+min]*counts[i]}.flatten end
2, Radix sort
def kth_digit(n, i) while(i > 1) n = n / 10 i = i - 1 end n % 10 end def radix_sort(a) max = a.max d = Math.log10(max).floor + 1 (1..d).each do |i| tmp = [] (0..9).each do |j| tmp[j] = [] end a.each do |n| kth = kth_digit(n, i) tmp[kth] << n end a = tmp.flatten end return a end
3, Bucket sort
def quick_sort(a) (x=a.pop) ? quick_sort(a.select{|i| i <= x}) + [x] + quick_sort(a.select{|i| i > x}) : [] end def first_number(n) (n * 10).to_i end def bucket_sort(a) tmp = [] (0..9).each do |j| tmp[j] = [] end a.each do |n| k = first_number(n) tmp[k] << n end (0..9).each do |j| tmp[j] = quick_sort(tmp[j]) end tmp.flatten end a = [0.75, 0.13, 0, 0.44, 0.55, 0.01, 0.98, 0.1234567] p bucket_sort(a) # Result: [0, 0.01, 0.1234567, 0.13, 0.44, 0.55, 0.75, 0.98]
评论
2 楼
q1241312
2012-10-20
厉害,快速排序用循环实现了,不知道时间复杂度是多少。
1 楼
gemstone
2008-11-27
很不错, 这里也有个实现。
Source: http://github.com/kanwei/algorithms/tree/master
require 'containers/heap' # for heapsort =begin rdoc This module implements sorting algorithms. Documentation is provided for each algorithm. =end module Algorithms::Sort # Bubble sort: A very naive sort that keeps swapping elements until the container is sorted. # Requirements: Needs to be able to compare elements with <=>, and the [] []= methods should # be implemented for the container. # Time Complexity: О(n^2) # Space Complexity: О(n) total, O(1) auxiliary # Stable: Yes # # Algorithms::Sort.bubble_sort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5] def self.bubble_sort(container) loop do swapped = false (container.size-1).times do |i| if (container[i] <=> container[i+1]) == 1 container[i], container[i+1] = container[i+1], container[i] # Swap swapped = true end end break unless swapped end container end # Comb sort: A variation on bubble sort that dramatically improves performance. # Source: http://yagni.com/combsort/ # Requirements: Needs to be able to compare elements with <=>, and the [] []= methods should # be implemented for the container. # Time Complexity: О(n^2) # Space Complexity: О(n) total, O(1) auxiliary # Stable: Yes # # Algorithms::Sort.comb_sort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5] def self.comb_sort(container) container gap = container.size loop do gap = gap * 10/13 gap = 11 if gap == 9 || gap == 10 gap = 1 if gap < 1 swapped = false (container.size - gap).times do |i| if (container[i] <=> container[i + gap]) == 1 container[i], container[i+gap] = container[i+gap], container[i] # Swap swapped = true end end break if !swapped && gap == 1 end container end # Selection sort: A naive sort that goes through the container and selects the smallest element, # putting it at the beginning. Repeat until the end is reached. # Requirements: Needs to be able to compare elements with <=>, and the [] []= methods should # be implemented for the container. # Time Complexity: О(n^2) # Space Complexity: О(n) total, O(1) auxiliary # Stable: Yes # # Algorithms::Sort.selection_sort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5] def self.selection_sort(container) 0.upto(container.size-1) do |i| min = i (i+1).upto(container.size-1) do |j| min = j if (container[j] <=> container[min]) == -1 end container[i], container[min] = container[min], container[i] # Swap end container end # Heap sort: Uses a heap (implemented by the Containers module) to sort the collection. # Requirements: Needs to be able to compare elements with <=> # Time Complexity: О(n^2) # Space Complexity: О(n) total, O(1) auxiliary # Stable: Yes # # Algorithms::Sort.heapsort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5] def self.heapsort(container) heap = Containers::Heap.new(container) ary = [] ary << heap.pop until heap.empty? ary end # Insertion sort: Elements are inserted sequentially into the right position. # Requirements: Needs to be able to compare elements with <=>, and the [] []= methods should # be implemented for the container. # Time Complexity: О(n^2) # Space Complexity: О(n) total, O(1) auxiliary # Stable: Yes # # Algorithms::Sort.insertion_sort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5] def self.insertion_sort(container) return container if container.size < 2 (1..container.size-1).each do |i| value = container[i] j = i-1 while j >= 0 and container[j] > value do container[j+1] = container[j] j = j-1 end container[j+1] = value end container end # Shell sort: Similar approach as insertion sort but slightly better. # Requirements: Needs to be able to compare elements with <=>, and the [] []= methods should # be implemented for the container. # Time Complexity: О(n^2) # Space Complexity: О(n) total, O(1) auxiliary # Stable: Yes # # Algorithms::Sort.shell_sort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5] def self.shell_sort(container) increment = container.size/2 while increment > 0 do (increment..container.size-1).each do |i| temp = container[i] j = i while j >= increment && container[j - increment] > temp do container[j] = container[j-increment] j -= increment end container[j] = temp end increment = (increment == 2 ? 1 : (increment / 2.2).round) end container end # Quicksort: A divide-and-conquer sort that recursively partitions a container until it is sorted. # Requirements: Container should implement #pop and include the Enumerable module. # Time Complexity: О(n log n) average, O(n^2) worst-case # Space Complexity: О(n) auxiliary # Stable: No # # Algorithms::Sort.quicksort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5] # def self.quicksort(container) # return [] if container.empty? # # x, *xs = container # # quicksort(xs.select { |i| i < x }) + [x] + quicksort(xs.select { |i| i >= x }) # end def self.partition(data, left, right) pivot = data[front] left += 1 while left <= right do if data[frontUnknown] < pivot back += 1 data[frontUnknown], data[back] = data[back], data[frontUnknown] # Swap end frontUnknown += 1 end data[front], data[back] = data[back], data[front] # Swap back end # def self.quicksort(container, left = 0, right = container.size - 1) # if left < right # middle = partition(container, left, right) # quicksort(container, left, middle - 1) # quicksort(container, middle + 1, right) # end # end def self.quicksort(container) bottom, top = [], [] top[0] = 0 bottom[0] = container.size i = 0 while i >= 0 do l = top[i] r = bottom[i] - 1; if l < r pivot = container[l] while l < r do r -= 1 while (container[r] >= pivot && l < r) if (l < r) container[l] = container[r] l += 1 end l += 1 while (container[l] <= pivot && l < r) if (l < r) container[r] = container[l] r -= 1 end end container[l] = pivot top[i+1] = l + 1 bottom[i+1] = bottom[i] bottom[i] = l i += 1 else i -= 1 end end container end # Mergesort: A stable divide-and-conquer sort that sorts small chunks of the container and then merges them together. # Returns an array of the sorted elements. # Requirements: Container should implement [] # Time Complexity: О(n log n) average and worst-case # Space Complexity: О(n) auxiliary # Stable: Yes # # Algorithms::Sort.mergesort [5, 4, 3, 1, 2] => [1, 2, 3, 4, 5] def self.mergesort(container) return container if container.size <= 1 mid = container.size / 2 left = container[0...mid] right = container[mid...container.size] merge(mergesort(left), mergesort(right)) end def self.merge(left, right) sorted = [] until left.empty? or right.empty? left.first <= right.first ? sorted << left.shift : sorted << right.shift end sorted + left + right end end
Source: http://github.com/kanwei/algorithms/tree/master
发表评论
-
用了TextMate才知道什么叫神级Editor
2011-03-09 04:51 58012一直用Eclipse作为开发Ruby和Java项目的IDE,但 ... -
Ruby使用OAuth登录新浪微博和豆瓣
2011-01-09 12:49 4487首先需要安装oauth这个gem包 gem install ... -
使用Passenger+nginx部署Rails
2010-12-28 15:12 50461. Install Passender gem instal ... -
markItUp+rdiscount搭建Rails下可视化Markdown编辑器
2010-12-21 17:48 5488markItUp是基于jQuery的可视化编辑器,支持Html ... -
Rails3 and MongoDB Quick Guide
2010-12-10 14:13 2770Install MongoDB Download: http: ... -
基于ruby-protobuf的rpc示例
2009-08-11 11:51 41601, 安装ruby-protobuf gem instal ... -
Ruby导出xls和csv的utf-8问题的解决
2009-02-04 15:05 6871数据库数据为utf-8格式,包括中文和拉丁文等等 导出文件xl ... -
URL/HTML/JavaScript的encode/escape
2009-01-04 13:03 9361最近经常被URL、HTML、JavaScript的encode ... -
12月5日北京RoR活动!
2008-11-26 18:38 3026又是一年过去了,Rails在国内的发展势态良好,很多使用RoR ... -
Rails程序开发的最大问题是代码规范
2008-08-28 11:56 5632使用Rails开发大型复杂B2B应用一年了,这个项目目前开发人 ... -
Web开发大全:ROR版——推荐序
2008-07-09 00:39 2434来自http://www.beyondrails.com/bl ... -
深入ActionMailer,使用Sendmail发邮件
2008-07-03 11:41 3404来自: http://www.beyondrails.com/ ... -
Rails里如何结合ExceptionNotification配置gmail账户发邮件
2008-06-19 19:56 31171,安装ExceptionNotification rub ... -
使用coderay和railscasts样式进行代码高亮
2008-06-17 00:16 2411CodeRay是一个语法高亮的Ruby库,效率很不错。 Cod ... -
Capistrano试用
2008-06-16 19:05 19661,客户端机器安装Capistrano gem insta ... -
lighttpd真垃圾啊
2008-06-04 18:38 2554使用lighttpd+fcgi跑Rails程序,文件上传会si ... -
将gem变成plugin
2008-06-04 11:27 1816有什么样的需求就有什么样的对策 当vhost上的帐号没有ge ... -
在Rails里使用ReCaptcha添加验证码
2008-06-03 15:51 42801,去http://recaptcha.net/sign up ... -
Rails里给文件上传添加progress_bar
2008-05-27 17:00 2102文件上传很慢时,UI没有什么用户提示,这样让人很费解,所以我们 ... -
attachment_fu的一个bug
2008-05-27 16:25 1800上传文件的size经常结果为0,让人很费解 解决办法,atta ...
相关推荐
本资源"ruby-使用ruby实现的排序算法-sorting.zip"聚焦于如何使用Ruby实现不同的排序算法,这对于Ruby开发者来说是一项重要的技能。下面将详细讨论Ruby中的排序算法及其原理。 1. 内置排序方法 `sort` Ruby提供了...
本资料包“ruby-使用ruby实现的算法之冒泡排序.zip”专注于讲解如何使用Ruby来实现经典的冒泡排序算法,这对于理解排序算法以及提升Ruby编程技能非常有帮助。 冒泡排序是一种基础且直观的排序算法,它通过重复遍历...
### Ruby 实现的各种排序算法详解 #### 一、概述 在计算机科学中,排序算法是基本且重要的数据处理手段之一,被广泛应用于多种场景。不同的排序算法有着各自的特点与应用场景,选择合适的排序算法能有效提高程序...
### Ruby实现的三种快速排序算法 #### 一、引言 快速排序是一种高效的排序算法,由英国计算机科学家托尼·霍尔(Tony Hoare)于1960年提出。其核心思想是通过一趟排序将待排记录分隔成独立的两部分,其中一部分的...
它支持搜索代码库中的各种Ruby标识符,如类、模块、方法、变量等,这些都是构成Ruby程序的基本元素。 类是Ruby中的核心概念,它定义了对象的结构和行为。Referral可以帮助开发者快速定位到类的定义,理解其属性和...
它包含了各种数据,如日期/时间格式、数字格式、货币格式、排序规则、拼写检查等,以及用于处理这些任务的API。ICU在许多语言环境中都是标准的本地化工具,包括Java、C++和.NET等。 Ruby-twittercldrrb库将ICU的...
在这个"一些图形算法的Ruby实现_Ruby_下载.zip"压缩包中,我们可以期待找到一些用Ruby编写的图形算法示例代码,帮助我们理解和应用这些概念。 1. 图的基本概念: - 图是由节点(或顶点)和边构成的数据结构,可以...
Ruby语言提供了多种实现排序的算法,这些算法各有优缺点,适用于不同的场景。以下将详细阐述标题和描述中提到的几种常见排序算法: 1. 冒泡排序(Bubble Sort) 冒泡排序是一种简单的排序算法,通过不断地交换相邻...
#### 二、Ruby中的冒泡排序实现 在给定的代码片段中,定义了一个`bubble_sort`方法来实现冒泡排序算法。下面将对该方法进行详细的分析和解释。 ```ruby def bubble_sort(array) n = array.length swapped = true ...
#### 知识点三:Ruby实现冒泡排序 ```ruby def bubble_sort(arr) len = arr.length for i in 0..len-2 swapped = false for j in 0..len-i-2 if arr[j] > arr[j+1] # 交换 arr[j]和 arr[j+1] arr[j], arr[j+...
基于Ruby实现Pagerank算法,可以让我们更深入地理解该算法并将其应用于实际项目中。 首先,我们需要了解Pagerank的基本原理。在互联网上,每个网页都可以看作是一个节点,而链接则作为节点之间的边。Pagerank计算时...
#Data Structures 这个仓库充满了我对各种数据结构的实现。 虽然这是一个 ruby 存储库,但我尽量不以 Ruby 方式实现这些结构,而是更规范的实现。 ##Array 使用内部数组并提供以下方法<< [] []= 推流行...
冒泡排序是一种简单的排序算法,它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。 部分代码示例...
在这个Ruby实现中,我们首先看如何通过代码理解合并排序的工作原理。 ### 合并排序算法概述 合并排序的核心思想是将一个大的数组分为两个较小的数组,对这两个数组分别进行排序,然后将两个已排序的数组合并成一个...
以下是一个二路插入排序的Ruby实现示例: ```ruby def two_way_sort(data) first, final = 0, 0 temp = [data[0]] result = [] data[1..-1].each_with_index do |item, i| if item >= temp[final] final += ...
在给定的压缩包中,`sort.rb` 和 `search.rb` 文件分别包含了实现这些算法的Ruby代码。 **排序算法**: 排序是指将一组数据按照特定顺序排列的过程。在`sort.rb`文件中,可能包含了不同的排序算法,如冒泡排序、...
`ordinaregem`是一个实用的工具,专门为Ruby开发者设计,用于自动化`Gemfile`的排序。它遵循一定的规则,如按字母顺序排列Gem,使得整个文件看起来更加整洁,也便于团队协作和代码审查。通过使用`ordinaregem`,...
- 集合操作如查找、排序、合并、过滤等,源代码会提供各种实例,帮助理解Ruby的数组和哈希操作的强大。 6. **文件和I/O** - 文件读写操作,如`File.open`,以及流处理,源代码将展示如何进行文件操作。 - 标准...