`
hepx
  • 浏览: 152360 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
社区版块
存档分类
最新评论

Linux上的free命令详解(转载)

阅读更多
  解释一下Linux上free命令的输出。
  下面是free的运行结果,一共有4行。为了方便说明,我们加上了列号。这样可以把free的输出看成一个二维数组FO(Free Output)。
例如:
FO[2][1] = 999212
FO[3][2] = 305404
                          1          2          3         4         5           6
1                       total       used       free     shared    buffers     cached
2 Mem:                  999212     967476     31736          0      50668     223000
3  -/+ buffers/cache:               693808     305404
4 Swap:                 2048276    154524     1893752   
  free的输出一共有四行,第四行为交换区的信息,分别是交换的总量(total),使用量(used)和有多少空闲的交换区(free),这个比较清楚,不说太多。
  free输出地第二行和第三行是比较让人迷惑的。这两行都是说明内存使用情况的。第一列是总量(free),第二列是使用量(free),第三列是可用量(free)。第一行的输出时从操作系统(OS)来看的。也就是说,从OS的角度来看,计算机上一共有:
999212KB(缺省时free的单位为KB)物理内存,即FO[2][1];
在这些物理内存中有967476KB(即FO[2][2])被使用了;
还用31736KB(即FO[2][3])是可用的;
这里得到第一个等式:
FO[2][1] = FO[2][2] + FO[2][3]
FO[2][4]表示被几个进程共享的内存的,现在已经deprecated,其值总是0(当然在一些系统上也可能不是0,主要取决于free命令是怎么实现的)。
FO[2][5]表示被OS buffer住的内存。FO[2][6]表示被OS cache的内存。在有些时候buffer和cache这两个词经常混用。不过在一些比较低层的软件里是要区分这两个词的,看老外的洋文:
A buffer is something that has yet to be "written" to disk.
A cache is something that has been "read" from the disk and stored for later use.
也就是说buffer是用于存放要输出到disk(块设备)的数据的,而cache是存放从disk上读出的数据。这二者是为了提高IO性能的,并由OS管理。
Linux和其他成熟的操作系统(例如windows),为了提高IO read的性能,总是要多cache一些数据,这也就是为什么FO[2][6](cached memory)比较大,而FO[2][3]比较小的原因。我们可以做一个简单的测试:
释放掉被系统cache占用的数据;
echo 3 >/proc/sys/vm/drop_caches

读一个大文件,并记录时间;
关闭该文件;
重读这个大文件,并记录时间;
第二次读应该比第一次快很多。原来我做过一个BerkeleyDB的读操作,大概要读5G的文件,几千万条记录。在我的环境上,第二次读比第一次大概可以快9倍左右。

  free输出的第二行是从一个应用程序的角度看系统内存的使用情况。
对于FO[3][2],即-buffers/cache,表示一个应用程序认为系统被用掉多少内存;
对于FO[3][3],即+buffers/cache,表示一个应用程序认为系统还有多少内存;
因为被系统cache和buffer占用的内存可以被快速回收,所以通常FO[3][3]比FO[2][3]会大很多。
这里还用两个等式:
FO[3][2] = FO[2][2] - FO[2][5] - FO[2][6]
FO[3][3] = FO[2][3] + FO[2][5] + FO[2][6]
这二者都不难理解。
  free命令由procps.*.rpm提供(在Redhat系列的OS上)。free命令的所有输出值都是从/proc/meminfo中读出的。
在系统上可能有meminfo(2)这个函数,它就是为了解析/proc/meminfo的。procps这个包自己实现了meminfo()这个函数。可以下载一个procps的tar包看看具体实现,现在最新版式3.2.8。


转载地址:http://www.cnblogs.com/coldplayerest/archive/2010/02/20/1669949.html
分享到:
评论

相关推荐

    2025职业教育知识竞赛题库(含答案).pptx

    2025职业教育知识竞赛题库(含答案).pptx

    "SOA海鸥算法优化下的KELM核极限学习机分类MATLAB代码详解:传感器故障诊断数据集应用与本地EXCEL数据读取功能",(SOA-KELM)海鸥算法SOA优化KELM核极限学习机分类MATLAB

    "SOA海鸥算法优化下的KELM核极限学习机分类MATLAB代码详解:传感器故障诊断数据集应用与本地EXCEL数据读取功能",(SOA-KELM)海鸥算法SOA优化KELM核极限学习机分类MATLAB代码 代码注释清楚。 main为运行主程序,可以读取本地EXCEL数据。 很方便,容易上手。 (以传感器故障诊断数据集为例) ,核心关键词:SOA-KELM;海鸥算法优化;核极限学习机分类;MATLAB代码;代码注释清楚;main程序;读取本地EXCEL数据;传感器故障诊断数据集。,SOA-KELM分类算法MATLAB代码:海鸥优化核极限学习机,轻松上手,读取EXCEL数据集进行传感器故障诊断

    人工智能领域:探索AI代理的进化与社会影响力及其应用前景

    内容概要:本文由世界经济论坛与Capgemini联合发布,主要阐述了AI代理从简单程序演变为复杂自主系统的进程,强调了它们在现代各行业如医疗保健、教育及金融服务等方面所发挥的作用,并讨论了其潜在收益以及伴随的风险和挑战。文中详细介绍了AI代理的发展历程、核心技术趋势(深度学习、强化学习)、多种类型的AI代理及其系统架构,同时对未来的发展方向——多智能体系统进行了展望,探讨了提高生产力、优化资源配置的新机会。 适合人群:对人工智能感兴趣的各界人士,尤其是关注技术创新对企业和社会长远影响的决策者和技术领导者,如商业领袖、政府官员及其他利益相关方。 使用场景及目标:①帮助政策制定者理解AI代理的功能和应用场景;②为企业管理者提供关于部署和管理AI系统的指导;③为研究者指明未来科研方向并探讨伦理和社会责任等问题;④为技术人员揭示当前最先进技术和最佳实践案例。 其他说明:文中还提到了随着更加先进的AI代理不断涌现,确保安全性和有效监管将是未来发展的重要议题之一。此外,跨行业的共识对于将AI代理顺利整合到各个部门至关重要。文章指出需要建立稳健治理机制来保障AI技术健康发展并服务于公共利益最大化的目标。

    2025网络安全理论知识考试题(含答案).pptx

    2025网络安全理论知识考试题(含答案).pptx

    基于java+ssm+mysql的在线听书网站 源码+数据库+论文(高分毕设项目).zip

    项目已获导师指导并通过的高分毕业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 项目都经过严格调试,确保可以运行!可以放心下载 技术组成 语言:java 开发环境:idea 数据库:MySql8.0 部署环境:Tomcat(建议用 7.x 或者 8.x 版本),maven 数据库工具:navicat

    基于FATFS系统的STM32F407 SD卡升级Bootloader程序:自动检测与升级流程,stm32f407 SD卡升级 bootloader程序 基于sdio fatfs系统的stm32 b

    基于FATFS系统的STM32F407 SD卡升级Bootloader程序:自动检测与升级流程,stm32f407 SD卡升级 bootloader程序 基于sdio fatfs系统的stm32 bootloader程序 功能简介: 本程序使用fatfs系统读取bin文件。 开机后会自动检测sd卡,检测到sd卡后,再读取固定名称的bin文件,之后会对bin文件进行首包校验,判断该升级包的起始地址是否正确,正确的话,就循环读取bin文件并写入到flash中。 完成升级。 详细流程请看流程图 ,stm32f407; SD卡升级; bootloader程序; fatfs系统读取bin文件; 检测SD卡; 首包校验; 循环写入flash。,STM32F407 SD卡升级Bootloader程序:基于SDIO FATFS系统实现自动升级功能

    2025网络与信息安全技术题库及答案.doc

    2025网络与信息安全技术题库及答案.doc

    C# WinForm通用软件开发框架源码,基于VS2019 .NET与DevExpress 21,WebApi连接SQLServer2014数据库,互联网化数据访问模式,C# 源码 WinForm?通

    C# WinForm通用软件开发框架源码,基于VS2019 .NET与DevExpress 21,WebApi连接SQLServer2014数据库,互联网化数据访问模式,C# 源码 WinForm?通用软件开发框架平台源码 基于:C#Winform+ WebApi +SQLServer2014数据库 基于:VS2019.NET? DevExpress 21.2.6控件 基于:SQLServer2014?数据库 客户端通过Http访问WebApi获得json数据的模式,本系统走互联网,只需要把WebApi发布在公网即可。 说明:此框架源码除系统管理功能外,其它无源码 ,C#源码; WinForm; WebApi; SQLServer2014; VS2019.NET; DevExpress控件; 互联网模式; 系统管理功能; 发布。,C# WinForm开发框架:基于DevExpress与WebApi的通用软件平台源码

    基于java+ssm+mysql的便民自行车管理系统 源码+数据库+论文(高分毕设项目).zip

    项目已获导师指导并通过的高分毕业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 项目都经过严格调试,确保可以运行!可以放心下载 技术组成 语言:java 开发环境:idea 数据库:MySql8.0 部署环境:Tomcat(建议用 7.x 或者 8.x 版本),maven 数据库工具:navicat

    基于SqueezeNet迁移学习算法的滚动轴承故障诊断方法研究-在MATLAB r2021b环境下的应用与拓展至多元信号领域的研究,MATLAB环境下一种基于sqeezenet网络迁移学习的滚动轴承

    基于SqueezeNet迁移学习算法的滚动轴承故障诊断方法研究——在MATLAB r2021b环境下的应用与拓展至多元信号领域的研究,MATLAB环境下一种基于sqeezenet网络迁移学习的滚动轴承故障诊断方法。 算法运行环境为MATLAB r2021b,该代码展示了如何使用深度学习(迁移学习)方法对滚动轴承进行故障诊断,演示了如何将一维轴承振动信号转为二维尺度图图像并使用预训练网络应用迁移学习对轴承故障进行分类。 迁移学习显著减少了传统轴承诊断方法特征提取和特征选择所花费的时间,并在小型数据集中获得了良好的准确性。 算法可迁移至金融时间序列,地震 微震信号,机械振动信号,声发射信号,电压 电流信号,语音信号,声信号,生理信号(ECG,EEG,EMG)等信号。 ,MATLAB环境; SqueezeNet网络; 迁移学习; 滚动轴承故障诊断; 算法运行环境; 一维轴承振动信号转换; 二维尺度图图像; 特征提取和选择; 信号分析;迁移至其他类型信号 (以分号隔开),基于SqueezeNet迁移学习在MATLAB的滚动轴承故障诊断算法优化

    基于弱形式PDE建模的COMSOL不相溶两相流渗流水驱油模拟研究,comsol不相溶两相流渗流模拟,水驱油,基于弱形式PDE建模,模型已验证 ,核心关键词:comsol; 不相溶两相流; 渗流模拟

    基于弱形式PDE建模的COMSOL不相溶两相流渗流水驱油模拟研究,comsol不相溶两相流渗流模拟,水驱油,基于弱形式PDE建模,模型已验证。 ,核心关键词:comsol; 不相溶两相流; 渗流模拟; 水驱油; 弱形式PDE建模; 模型验证。,"基于弱形式PDE建模的COMSOL两相流渗流模拟:验证水驱油模型"

    Tiled for Mac v1.11.1

    Tiled for Mac是一款功能强大的开源地图编辑器,适用于macOS系统。它支持正交、等距和六边形地图类型,可创建无限大小的地图,并支持多图层编辑。用户可以通过直观的界面快速添加、修改地图元素,使用像素精度放置对象,并支持图块动画和碰撞编辑。Tiled的TMX格式易于理解,支持多种插件扩展,兼容多种游戏引擎,如RPG和平台游戏。它还提供撤销/重做功能,方便用户调整和优化地图。

    太阳能光伏MPPT控制蓄电池三阶段充电模型仿真说明文档(附扰动观测法仿真模型,R2015b版),充电控制器,太阳能光伏MPPT控制蓄电池充电模型 其中,光伏MPPT控制采用扰动观测法(P&O法),蓄

    太阳能光伏MPPT控制蓄电池三阶段充电模型仿真说明文档(附扰动观测法仿真模型,R2015b版),充电控制器,太阳能光伏MPPT控制蓄电池充电模型。 其中,光伏MPPT控制采用扰动观测法(P&O法),蓄电池充电采用三阶段充电控制。 仿真模型附加一份仿真说明文档,便于理解和修改参数。 版本: R2015b ,充电控制器; 光伏MPPT控制; 扰动观测法(P&O法); 蓄电池充电控制; 三阶段充电控制; 仿真模型; 仿真说明文档; 版本:R2015b,"R2015b版:太阳能光伏MPPT三阶段充电控制仿真模型及说明"

    基于java+ssm+mysql的蛋糕甜品店管理系统 源码+数据库+论文(高分毕设项目).zip

    项目已获导师指导并通过的高分毕业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 项目都经过严格调试,确保可以运行!可以放心下载 技术组成 语言:java 开发环境:idea 数据库:MySql8.0 部署环境:Tomcat(建议用 7.x 或者 8.x 版本),maven 数据库工具:navicat

    2025医院收费员考试题题库(含答案).docx

    2025医院收费员考试题题库(含答案).docx

    "欧姆龙PLC编程新手宝典:标准程序案例集,包括CP1H脉冲编程与触摸屏实战应用",欧姆龙PLC程序欧姆龙案例欧姆龙标准程序 本产品适用于新手或者在校生 本程序包括有欧姆龙CP1H脉冲程序案例,威纶

    "欧姆龙PLC编程新手宝典:标准程序案例集,包括CP1H脉冲编程与触摸屏实战应用",欧姆龙PLC程序欧姆龙案例欧姆龙标准程序 本产品适用于新手或者在校生 本程序包括有欧姆龙CP1H脉冲程序案例,威纶通触摸屏程序,电子版讲义 程序涉及方面广,适合新手入门学习,掌握了这些以后欧姆龙脉冲程序基本通吃,编程起来无压力 本程序设计到CP1H各个轴的程序编写具体用了ACC PLS2 INI等众多指令, 每个轴的程序都是单独的,包括触摸屏在内,您可以直接调用程序套到直接的程序上,只需要把地址稍微改动即可。 本程序适用于新手、自动化专业在校生学习和提高,另外额外赠送主流的CAD电气原理图纸,包含各种主流的PLC接线原理图,各种成功案例,是每个电气工程师学习和提高最必不可少的资料 ,欧姆龙PLC程序; 欧姆龙案例; 欧姆龙标准程序; 新手学习; 在校生; CP1H脉冲程序案例; 威纶通触摸屏程序; 电子版讲义; 编程指令; 程序设计; PLC接线原理图; 成功案例。,欧姆龙PLC入门宝典:从新手到专业工程师的实用指南

    "基于Simulink的锂电池SOC估计模型研究:卡尔曼滤波算法的参数辨识与模型优化",锂电池SOC估计模型 simulink SOC估算卡尔曼滤波估算 SOC电池参数辨识模型10个; 卡尔曼滤波算法

    "基于Simulink的锂电池SOC估计模型研究:卡尔曼滤波算法的参数辨识与模型优化",锂电池SOC估计模型 simulink SOC估算卡尔曼滤波估算 SOC电池参数辨识模型10个; 卡尔曼滤波算法锂电池SOC估算估算模型15个; 卡尔曼滤波31个; ,锂电池SOC估计模型; Simulink; SOC估算; 卡尔曼滤波估算; 电池参数辨识模型; 锂电池SOC卡尔曼滤波估算模型; 卡尔曼滤波,基于Simulink的锂电池SOC估计与卡尔曼滤波算法研究

    苍鹰算法优化BP神经网络参数:多输入单输出预测建模及效果展示 注:此程序为matlab编写,可直接运行出多种预测结果图与评价指标 效果图为测试数据展示,具体预测效果以个人数据为准 ,苍鹰优化算法NG

    苍鹰算法优化BP神经网络参数:多输入单输出预测建模及效果展示 注:此程序为matlab编写,可直接运行出多种预测结果图与评价指标。效果图为测试数据展示,具体预测效果以个人数据为准。,苍鹰优化算法NGO优化BP神经网络的软值和阈值参数做多输入单输出的拟合预测建模。 程序内注释详细直接替数据就可以使用。 程序语言为matlab。 程序直接运行可以出拟合预测图,迭代优化图,线性拟合预测图,多个预测评价指标。 PS:以下效果图为测试数据的效果图,主要目的是为了显示程序运行可以出的结果图,具体预测效果以个人的具体数据为准。 2.由于每个人的数据都是独一无二的,因此无法做到可以任何人的数据直接替就可以得到自己满意的效果。 ,核心关键词: 苍鹰优化算法; NGO优化; BP神经网络; 软值和阈值参数; 多输入单输出拟合预测建模; 程序内注释; MATLAB程序语言; 拟合预测图; 迭代优化图; 线性拟合预测图; 预测评价指标。,基于苍鹰优化算法的NGO-BP神经网络模型:多输入单输出拟合预测建模与评估

    基于java+ssm+mysql的医院交互系统 源码+数据库+论文(高分毕设项目).zip

    项目已获导师指导并通过的高分毕业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 项目都经过严格调试,确保可以运行!可以放心下载 技术组成 语言:java 开发环境:idea 数据库:MySql8.0 部署环境:Tomcat(建议用 7.x 或者 8.x 版本),maven 数据库工具:navicat

    GTP4ALL的安装文件

    GTP4ALL的安装文件

Global site tag (gtag.js) - Google Analytics