`

java 泛型

阅读更多

  泛型 是Java SE 1.5的新特性,泛型的本质是参数化类型,也就是说所操作的数据类型被指定为一个参数。这种参数类型可以用在类、接口和方法的创建中,分别称为泛型类、泛 型接口、泛型方法。

  Java语言引入泛型的好处是安全简单。
  在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,“任意化”带来的缺点是要做显式的强制类型转换,而这种转换是要 求开发者对实际参数类型可以预知的情况下进行的。对于强制类型转换错误的情况,编译器可能不提示错误,在运行的时候才出现异常,这是一个安全隐患。
  泛型的好处是在编译的时候检查类型安全,并且所有的强制转换都是自动和隐式的,提高代码的重用 率。

规则和限制

  1、泛型的类型参数只能是类类型(包括自定义类),不能是简单类型。
  2、同一种泛型可以对应多个版本(因为参数类型是不确定的),不同版本的泛型类实例是不兼容 的。
  3、泛型的类型参数可以有多个。
  4、泛型的参数类型可以使用extends语句,例如<T extends superclass>。习惯上称为“有界类型”。
  5、泛型的参数类型还可以是通配符类型。例如Class<?> classType = Class.forName(java.lang.String);
  泛型还有接口、方法等等,内容很多,需要花费一番功夫才能理解掌握并熟练应用。在此给出我曾经 了解泛型时候写出的两个例子(根据看的印象写的),实现同样的功能,一个使用了泛型,一个没有使用,通过对比,可以很快学会泛型的应用,学会这个基本上学 会了泛型70%的内容。
  例子一:使用了泛型
  public class Gen<T> {
  private T ob; //定义泛型成员变量
  public Gen(T ob) {
  this.ob = ob;
  }
  public T getOb() {
  return ob;
  }
  public void setOb(T ob) {
  this.ob = ob;
  }
  public void showTyep() {
  System.out.println("T的实际类型是: " + ob.getClass().getName());
  }
  }
  public class GenDemo {
  public static void main(String[] args){
  //定义泛型类Gen的一个Integer版本
  Gen<Integer> intOb=new Gen<Integer>(88);
  intOb.showTyep();
  int i= intOb.getOb();
  System.out.println("value= " + i);
   System.out.println("----------------------------------");
  //定义泛型类Gen的一个String版本
  Gen<String> strOb=new Gen<String>("Hello Gen!");
  strOb.showTyep();
  String s=strOb.getOb();
  System.out.println("value= " + s);
  }
  }
  例子二:没有使用泛型
  public class Gen2 {
  private Object ob; //定义一个通用类型成员
  public Gen2(Object ob) {
  this.ob = ob;
  }
  public Object getOb() {
  return ob;
  }
  public void setOb(Object ob) {
  this.ob = ob;
  }
  public void showTyep() {
  System.out.println("T的实际类型是: " + ob.getClass().getName());
  }
  }
  public class GenDemo2 {
  public static void main(String[] args) {
  //定义类Gen2的一个Integer版本
  Gen2 intOb = new Gen2(new Integer(88));
  intOb.showTyep();
  int i = (Integer) intOb.getOb();
  System.out.println("value= " + i);
   System.out.println("----------------------------------");
  //定义类Gen2的一个String版本
  Gen2 strOb = new Gen2("Hello Gen!");
  strOb.showTyep();
  String s = (String) strOb.getOb();
  System.out.println("value= " + s);
  }
  }
  运行结果:
  两个例子运行Demo结果是相同的,控制台输出结果如下:
  T的实际类型是:
  java.lang.Integer
  value= 88
  ----------------------------------
  T的实际类型是: java.lang.String
  value= Hello Gen!
  Process finished with exit code 0
  看明白这个,以后基本的泛型应用和代码阅读就不成问题了。

逐渐深入泛型

  1、没有任何重构的原始代码:
  有两个类如下,要构造两个类的对象,并打印出各自的成员x。
  public class StringFoo {
  private String x;
  public StringFoo(String x) {
  this.x = x;
  }
  public String getX() {
  return x;
  }
  public void setX(String x) {
  this.x = x;
  }
  }
  public class DoubleFoo {
  private Double x;
  public DoubleFoo(Double x) {
  this.x = x;
  }
  public Double getX() {
  return x;
  }
  public void setX(Double x) {
  this.x = x;
  }
  }
  以上的代码是在无聊,就不写如何实现了。
  2、对上面的两个类进行重构,写成一个类:
  因为上面的类中,成员和方法的逻辑都一样,就是类型不一样,因此考虑重构。Object是所有 类的父类,因此可以考虑用Object做为成员类型,这样就可以实现通用了,实际上就是“Object泛型”,暂时这么称呼。
  public class ObjectFoo {
  private Object x;
  public ObjectFoo(Object x) {
  this.x = x;
  }
  public Object getX() {
  return x;
  }
  public void setX(Object x) {
  this.x = x;
  }
  }
  写出Demo方法如下:
  public class ObjectFooDemo {
  public static void main(String args[]) {
  ObjectFoo strFoo = new ObjectFoo("Hello Generics!");
  ObjectFoo douFoo = new ObjectFoo(new Double("33"));
  ObjectFoo objFoo = new ObjectFoo(new Object());
   System.out.println("strFoo.getX="+(String)strFoo.getX());
   System.out.println("douFoo.getX="+(Double)douFoo.getX());
   System.out.println("objFoo.getX="+(Object)objFoo.getX());
  }
  }
  运行结果如下:
  strFoo.getX=Hello Generics!
  douFoo.getX=33.0
  objFoo.getX=java.lang.Object@19821f
  解说:在Java 5之前,为了让类有通用性,往往将参数类型、返回类型设置为Object类型,当获取这些返回类型来使用时候,必须将其“强制”转换为原有的类型或者接 口,然后才可以调用对象上的方法。
  3、Java5泛型来实现
  强制类型转换很麻烦,我还要事先知道各个Object具体类型是什么,才能做出正确转换。否 则,要是转换的类型不对,比如将“Hello Generics!”字符串强制转换为Double,那么编译的时候不会报错,可是运行的时候就挂了。那有没有不强制转换的办法----有,改用 Java5泛型来实现。
  public class GenericsFoo<T> {
  private T x;
  public GenericsFoo(T x) {
  this.x = x;
  }
  public T getX() {
  return x;
  }
  public void setX(T x) {
  this.x = x;
  }
  }
  public class GenericsFooDemo {
  public static void main(String args[]){
  GenericsFoo<String> strFoo=new GenericsFoo<String>("Hello Generics!");
  GenericsFoo<Double> douFoo=new GenericsFoo<Double>(new Double("33"));
  GenericsFoo<Object> objFoo=new GenericsFoo<Object>(new Object());
   System.out.println("strFoo.getX="+strFoo.getX());
   System.out.println("douFoo.getX="+douFoo.getX());
   System.out.println("objFoo.getX="+objFoo.getX());
  }
  }
  运行结果:
  strFoo.getX=Hello Generics!
  douFoo.getX=33.0
  objFoo.getX=java.lang.Object@19821f
  和使用“Object泛型”方式实现结果的完全一样,但是这个Demo简单多了,里面没有强制 类型转换信息。
  下面解释一下上面泛型类的语法:
  使用<T>来声明一个类型持有者名称,然后就可以把T当作一个类型代表来声明成 员、参数和返回值类型。
  当然T仅仅是个名字,这个名字可以自行定义。
  class GenericsFoo<T> 声明了一个泛型类,这个T没有任何限制,实际上相当于Object类型,实际上相当于 class GenericsFoo<T extends Object>。
  与Object泛型类相比,使用泛型所定义的类在声明和构造实例的时候,可以使用“<实 际类型>”来一并指定泛型类型持有者的真实类型。类如
  GenericsFoo<Double> douFoo=new GenericsFoo<Double>(new Double("33"));
  当然,也可以在构造对象的时候不使用尖括号指定泛型类型的真实类型,但是你在使用该对象的时 候,就需要强制转换了。比如:GenericsFoo douFoo=new GenericsFoo(new Double("33"));
  实际上,当构造对象时不指定类型信息的时候,默认会使用Object类型,这也是要强制转换的 原因。

泛型的高级应用

  1、限制泛型的可用类型
  在上面的例子中,由于没有限制class GenericsFoo<T>类型持有者T的范围,实际上这里的限定类型相当于Object,这和“Object泛型”实质是一样的。限制比 如我们要限制T为集合接口类型。只需要这么做:
  class GenericsFoo<T extends Collection>,这样类中的泛型T只能是Collection接口的实现类,传入非Collection接口编译会出错。
  注意:<T extends Collection>这里的限定使用关键字 extends,后面可以是类也可以是接口。但这里的extends已经不是继承的含义了,应该理解为T类型是实现Collection接口的类型,或者 T是继承了XX类的类型。
  下面继续对上面的例子改进,我只要实现了集合接口的类型:
  public class CollectionGenFoo<T extends Collection> {
  private T x;
  public CollectionGenFoo(T x) {
  this.x = x;
  }
  public T getX() {
  return x;
  }
  public void setX(T x) {
  this.x = x;
  }
  }
  实例化的时候可以这么写:
  public class CollectionGenFooDemo {
  public static void main(String args[]) {
  CollectionGenFoo<ArrayList> listFoo = null;
  listFoo = new CollectionGenFoo<ArrayList>(new ArrayList());
  //出错了,不让这么干。
  // CollectionGenFoo<Collection> listFoo = null;
  // listFoo=new CollectionGenFoo<ArrayList>(new ArrayList());
  System.out.println("实例化成功!");
  }
  }
  当前看到的这个写法是可以编译通过,并运行成功。可是注释掉的两行加上就出错了,因 为<T extends Collection>这么定义类型的时候,就限定了构造此类实例的时候T是确定的一个类型,这个类型实现了Collection接口,但是实现 Collection接口的类很多很多,如果针对每一种都要写出具体的子类类型,那也太麻烦了,我干脆还不如用Object通用一下。别急,泛型针对这种 情况还有更好的解决方案,那就是“通配符泛型”。
  2、通配符泛型
  为了解决类型被限制死了不能动态根据实例来确定的缺点,引入了“通配符泛型”,针对上面的例 子,使用通配泛型格式为<? extends Collection>,“?”代表未知类型,这个类型是实现Collection接口。那么上面实现的方式可以写为:
  public class CollectionGenFooDemo {
  public static void main(String args[]) {
  CollectionGenFoo<ArrayList> listFoo = null;
  listFoo = new CollectionGenFoo<ArrayList>(new ArrayList());
  //现在不会出错了
  CollectionGenFoo<? extends Collection> listFoo1 = null;
  listFoo=new CollectionGenFoo<ArrayList>(new ArrayList());
  System.out.println("实例化成功!");
  }
  }
  注意:
  1、如果只指定了<?>,而没有extends,则默认是允许Object及其下 的任何Java类了。也就是任意类。
  2、通配符泛型不单可以向下限制,如<? extends Collection>,还可以向上限制,如<? super Double>,表示类型只能接受Double及其上层父类类型,如Number、Object类型的实例。
  3、泛型类定义可以有多个泛型参数,中间用逗号隔开,还可以定义泛型接口,泛型方法。这些都泛 型类中泛型的使用规则类似。

泛型方法

     是否拥有泛型方法,与其所在的类是否泛型没有关系。要定义泛型方法,只需将泛型参数列表置于返回值前。如:
  public class ExampleA  {
  public <T> void f(T x)   {
  System.out.println(x.getClass().getName());
  }
  public static void main(String[] args) {
  ExampleA ea = new ExampleA();
  ea.f(" ");
  ea.f(10);
  ea.f('a');
  ea.f(ea);
  }
  }
  输出结果:
  java.lang.String
  java.lang.Integer
  java.lang.Character
  ExampleA
  使用泛型方法时,不必指明参数类型,编译器会自己找出具体的类型。泛型方法除了定义不同,调用 就像普通方法一样。
  需要注意,一个static方法,无法访问泛型类的类型参数,所有,若要static方法需要 使用泛型能力,必须使其成为泛型方法。





分享到:
评论

相关推荐

    Java泛型的用法及T.class的获取过程解析

    Java泛型的用法及T.class的获取过程解析 Java泛型是Java编程语言中的一种重要特性,它允许开发者在编写代码时指定类型参数,从而提高代码的灵活性和可读性。本文将详细介绍Java泛型的用法 及T.class的获取过程解析...

    Java泛型三篇文章,让你彻底理解泛型(super ,extend等区别)

    Java 泛型详解 Java 泛型是 Java SE 5.0 中引入的一项特征,它允许程序员在编译时检查类型安全,从而减少了 runtime 错误的可能性。泛型的主要优点是可以Reusable Code,让程序员编写更加灵活和可维护的代码。 ...

    Java泛型应用实例

    Java泛型是Java编程语言中的一个强大特性,它允许我们在定义类、接口和方法时指定类型参数,从而实现代码的重用和类型安全。在Java泛型应用实例中,我们可以看到泛型如何帮助我们提高代码的灵活性和效率,减少运行时...

    很好的Java泛型的总结

    Java泛型机制详解 Java泛型是Java语言中的一种机制,用于在编译期检查类型安全。Java泛型的出现解决了Java早期版本中类型安全检查的缺陷。Java泛型的好处是可以在编译期检查类型安全,避免了运行时的...

    java 泛型类的类型识别示例

    综上所述,虽然Java泛型在编译后会进行类型擦除,但通过上述技巧,我们仍然能够在运行时获得关于泛型类实例化类型的一些信息。在实际开发中,这些方法可以帮助我们编写更加灵活和安全的代码。在示例文件`GenericRTTI...

    java泛型技术之发展

    Java泛型是Java编程语言中的一个关键特性,它在2004年随着Java SE 5.0的发布而引入,极大地增强了代码的类型安全性和重用性。本篇文章将深入探讨Java泛型的发展历程、核心概念以及其在实际开发中的应用。 1. **发展...

    SUN公司Java泛型编程文档

    Java泛型是Java编程语言中的一个关键特性,它在2004年随着JDK 5.0的发布被引入。这个特性极大地提高了代码的类型安全性和可读性,减少了在运行时出现ClassCastException的可能性。SUN公司的Java泛型编程文档,包括...

    java 泛型接口示例

    下面我们将详细探讨Java泛型接口的相关知识点。 1. **泛型接口的定义** 泛型接口的定义方式与普通接口类似,只是在接口名之后添加了尖括号`&lt;T&gt;`,其中`T`是一个类型参数,代表某种未知的数据类型。例如: ```java...

    java 泛型方法使用示例

    下面我们将深入探讨Java泛型方法的概念、语法以及使用示例。 **一、泛型方法概念** 泛型方法是一种具有类型参数的方法,这些类型参数可以在方法声明时指定,并在方法体内部使用。与类的泛型类似,它们提供了编译时...

    java泛型的内部原理及更深应用

    Java泛型是Java编程语言中的一个强大特性,它允许在定义类、接口和方法时使用类型参数,从而实现参数化类型。这使得代码更加安全、可读性更强,并且能够减少类型转换的必要。在“java泛型的内部原理及更深应用”这个...

    Java 泛型擦除后的三种补救方法

    Java 泛型是一种强大的工具,它允许我们在编程时指定变量的类型,提供了编译时的类型安全。然而,Java 的泛型在运行时是被擦除的,这意味着在运行时刻,所有的泛型类型信息都会丢失,无法直接用来创建对象或进行类型...

    JAVA泛型加减乘除

    这是一个使用JAVA实现的泛型编程,分为两部分,第一部分创建泛型类,并实例化泛型对象,得出相加结果。 第二部分用户自行输入0--4,选择要进行的加减乘除运算或退出,再输入要进行运算的两个数,并返回运算结果及...

    java泛型学习ppt

    "Java 泛型学习" Java 泛型是 Java 语言的类型系统的一种扩展,以支持创建可以按类型进行参数化的类。泛型的主要目标是提高 Java 程序的类型安全。通过知道使用泛型定义的变量的类型限制,编译器可以在一个高得多的...

    Java泛型使用详细分析.pdf

    Java 泛型使用详细分析 Java 泛型是 Java 语言中的一种类型系统特性,允许开发者在编译期检查类型安全,以避免在运行时出现类型相关的错误。在本文中,我们将详细介绍 Java 泛型的使用方法和实现原理。 一、泛型的...

    Java泛型技术之发展.pdf

    Java泛型是Java编程语言中的一个关键特性,它在2004年随着Java SE 5.0的发布而引入,极大地增强了代码的类型安全性和重用性。本篇文章将深入探讨Java泛型的发展历程、核心概念以及其在实际开发中的应用。 1. **发展...

    面试必须资料java泛型攻略、

    #### 一、什么是Java泛型? Java泛型(Generics)是一种在编译时确保类型安全的机制,它允许程序员编写类型安全的通用类或方法,而无需进行显式的类型转换。在Java 1.5引入泛型之前,集合类(如`ArrayList`)只能...

Global site tag (gtag.js) - Google Analytics