- 浏览: 90979 次
- 性别:
- 来自: 深圳
-
文章分类
最新评论
-
flyingsir_zw:
导入weibosinaLib的时候遇到的问题,可以解决。方法很 ...
Android library projects cannot be launched -
oldend2012:
哎哟,还真的是这样,谢谢了。
Android library projects cannot be launched
五、定义模式规则
你可以使用模式规则来定义一个隐含规则。一个模式规则就好像一个一般的规则,只是在规则中,目标的定义需要有"%"字符。"%"的意思是表示一个或多个任意字符。在依赖目标中同样可以使用"%",只是依赖目标中的"%"的取值,取决于其目标。
有一点需要注意的是,"%"的展开发生在变量和函数的展开之后,变量和函数的展开发生在make载入Makefile时,而模式规则中的"%"则发生在运行时。
1、模式规则介绍
模式规则中,至少在规则的目标定义中要包含"%",否则,就是一般的规则。目标中的"%"定义表示对文件名的匹配,"%"表示长度任意的非空字符串。例如:"%.c"表示以".c"结尾的文件名(文件名的长度至少为3),而"s.%.c"则表示以"s."开头,".c"结尾的文件名(文件名的长度至少为5)。
如果"%"定义在目标中,那么,目标中的"%"的值决定了依赖目标中的"%"的值,也就是说,目标中的模式的"%"决定了依赖目标中"%"的样子。例如有一个模式规则如下:
%.o : %.c ; <command ......>
其含义是,指出了怎么从所有的[.c]文件生成相应的[.o]文件的规则。如果要生成的目标是"a.o b.o",那么"%c"就是"a.c b.c"。
一旦依赖目标中的"%"模式被确定,那么,make会被要求去匹配当前目录下所有的文件名,一旦找到,make就会规则下的命令,所以,在模式规则中,目标可能会是多个的,如果有模式匹配出多个目标,make就会产生所有的模式目标,此时,make关心的是依赖的文件名和生成目标的命令这两件事。
2、模式规则示例
下面这个例子表示了,把所有的[.c]文件都编译成[.o]文件.
%.o : %.c
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@
其中,"$@"表示所有的目标的挨个值,"$<"表示了所有依赖目标的挨个值。这些奇怪的变量我们叫"自动化变量",后面会详细讲述。
下面的这个例子中有两个目标是模式的:
%.tab.c %.tab.h: %.y
bison -d $<
这条规则告诉make把所有的[.y]文件都以"bison -d <n>.y"执行,然后生成"<n>.tab.c"和"<n>.tab.h"文件。(其中,"<n>"表示一个任意字符串)。如果我们的执行程序"foo"依赖于文件"parse.tab.o"和"scan.o",并且文件"scan.o"依赖于文件"parse.tab.h",如果"parse.y"文件被更新了,那么根据上述的规则,"bison -d parse.y"就会被执行一次,于是,"parse.tab.o"和"scan.o"的依赖文件就齐了。(假设,"parse.tab.o"由"parse.tab.c"生成,和"scan.o"由"scan.c"生成,而"foo"由"parse.tab.o"和"scan.o"链接生成,而且foo和其[.o]文件的依赖关系也写好,那么,所有的目标都会得到满足)
3、自动化变量
在上述的模式规则中,目标和依赖文件都是一系例的文件,那么我们如何书写一个命令来完成从不同的依赖文件生成相应的目标?因为在每一次的对模式规则的解析时,都会是不同的目标和依赖文件。
自动化变量就是完成这个功能的。在前面,我们已经对自动化变量有所提涉,相信你看到这里已对它有一个感性认识了。所谓自动化变量,就是这种变量会把模式中所定义的一系列的文件自动地挨个取出,直至所有的符合模式的文件都取完了。这种自动化变量只应出现在规则的命令中。
下面是所有的自动化变量及其说明:
$@
表示规则中的目标文件集。在模式规则中,如果有多个目标,那么,"$@"就是匹配于目标中模式定义的集合。
$%
仅当目标是函数库文件中,表示规则中的目标成员名。例如,如果一个目标是"foo.a(bar.o)",那么,"$%"就是"bar.o","$@"就是"foo.a"。如果目标不是函数库文件(Unix下是[.a],Windows下是[.lib]),那么,其值为空。
$<
依赖目标中的第一个目标名字。如果依赖目标是以模式(即"%")定义的,那么"$<"将是符合模式的一系列的文件集。注意,其是一个一个取出来的。
$?
所有比目标新的依赖目标的集合。以空格分隔。
$^
所有的依赖目标的集合。以空格分隔。如果在依赖目标中有多个重复的,那个这个变量会去除重复的依赖目标,只保留一份。
$+
这个变量很像"$^",也是所有依赖目标的集合。只是它不去除重复的依赖目标。
$*
这个变量表示目标模式中"%"及其之前的部分。如果目标是"dir/a.foo.b",并且目标的模式是"a.%.b",那么,"$*"的值就是"dir/a.foo"。这个变量对于构造有关联的文件名是比较有较。如果目标中没有模式的定义,那么"$*"也就不能被推导出,但是,如果目标文件的后缀是make所识别的,那么"$*"就是除了后缀的那一部分。例如:如果目标是"foo.c",因为".c"是make所能识别的后缀名,所以,"$*"的值就是"foo"。这个特性是GNU make的,很有可能不兼容于其它版本的make,所以,你应该尽量避免使用"$*",除非是在隐含规则或是静态模式中。如果目标中的后缀是make所不能识别的,那么"$*"就是空值。
当你希望只对更新过的依赖文件进行操作时,"$?"在显式规则中很有用,例如,假设有一个函数库文件叫"lib",其由其它几个object文件更新。那么把object文件打包的比较有效率的Makefile规则是:
lib : foo.o bar.o lose.o win.o
ar r lib $?
在上述所列出来的自动量变量中。四个变量($@、$<、$%、$*)在扩展时只会有一个文件,而另三个的值是一个文件列表。这七个自动化变量还可以取得文件的目录名或是在当前目录下的符合模式的文件名,只需要搭配上"D"或"F"字样。这是GNU make中老版本的特性,在新版本中,我们使用函数"dir"或"notdir"就可以做到了。"D"的含义就是Directory,就是目录,"F"的含义就是File,就是文件。
下面是对于上面的七个变量分别加上"D"或是"F"的含义:
$(@D)
表示"$@"的目录部分(不以斜杠作为结尾),如果"$@"值是"dir/foo.o",那么"$(@D)"就是"dir",而如果"$@"中没有包含斜杠的话,其值就是"."(当前目录)。
$(@F)
表示"$@"的文件部分,如果"$@"值是"dir/foo.o",那么"$(@F)"就是"foo.o","$(@F)"相当于函数"$(notdir $@)"。
"$(*D)"
"$(*F)"
和上面所述的同理,也是取文件的目录部分和文件部分。对于上面的那个例子,"$(*D)"返回"dir",而"$(*F)"返回"foo"
"$(%D)"
"$(%F)"
分别表示了函数包文件成员的目录部分和文件部分。这对于形同"archive(member)"形式的目标中的"member"中包含了不同的目录很有用。
"$(<D)"
"$(<F)"
分别表示依赖文件的目录部分和文件部分。
"$(^D)"
"$(^F)"
分别表示所有依赖文件的目录部分和文件部分。(无相同的)
"$(+D)"
"$(+F)"
分别表示所有依赖文件的目录部分和文件部分。(可以有相同的)
"$(?D)"
"$(?F)"
分别表示被更新的依赖文件的目录部分和文件部分。
最后想提醒一下的是,对于"$<",为了避免产生不必要的麻烦,我们最好给$后面的那个特定字符都加上圆括号,比如,"$(< )"就要比"$<"要好一些。
还得要注意的是,这些变量只使用在规则的命令中,而且一般都是"显式规则"和"静态模式规则"(参见前面"书写规则"一章)。其在隐含规则中并没有意义。
4、模式的匹配
一般来说,一个目标的模式有一个有前缀或是后缀的"%",或是没有前后缀,直接就是一个"%"。因为"%"代表一个或多个字符,所以在定义好了的模式中,我们把"%"所匹配的内容叫做"茎",例如"%.c"所匹配的文件"test.c"中"test"就是"茎"。因为在目标和依赖目标中同时有"%"时,依赖目标的"茎"会传给目标,当做目标中的"茎"。
当一个模式匹配包含有斜杠(实际也不经常包含)的文件时,那么在进行模式匹配时,目录部分会首先被移开,然后进行匹配,成功后,再把目录加回去。在进行"茎"的传递时,我们需要知道这个步骤。例如有一个模式"e%t",文件"src/eat"匹配于该模式,于是"src/a"就是其"茎",如果这个模式定义在依赖目标中,而被依赖于这个模式的目标中又有个模式"c%r",那么,目标就是"src/car"。("茎"被传递)
5、重载内建隐含规则
你可以重载内建的隐含规则(或是定义一个全新的),例如你可以重新构造和内建隐含规则不同的命令,如:
%.o : %.c
$(CC) -c $(CPPFLAGS) $(CFLAGS) -D$(date)
你可以取消内建的隐含规则,只要不在后面写命令就行。如:
%.o : %.s
同样,你也可以重新定义一个全新的隐含规则,其在隐含规则中的位置取决于你在哪里写下这个规则。朝前的位置就靠前。
六、老式风格的"后缀规则"
后缀规则是一个比较老式的定义隐含规则的方法。后缀规则会被模式规则逐步地取代。因为模式规则更强更清晰。为了和老版本的Makefile兼容,GNU make同样兼容于这些东西。后缀规则有两种方式:"双后缀"和"单后缀"。
双后缀规则定义了一对后缀:目标文件的后缀和依赖目标(源文件)的后缀。如".c.o"相当于"%o : %c"。单后缀规则只定义一个后缀,也就是源文件的后缀。如".c"相当于"% : %.c"。
后缀规则中所定义的后缀应该是make所认识的,如果一个后缀是make所认识的,那么这个规则就是单后缀规则,而如果两个连在一起的后缀都被make所认识,那就是双后缀规则。例如:".c"和".o"都是make所知道。因而,如果你定义了一个规则是".c.o"那么其就是双后缀规则,意义就是".c"是源文件的后缀,".o"是目标文件的后缀。如下示例:
.c.o:
$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<
后缀规则不允许任何的依赖文件,如果有依赖文件的话,那就不是后缀规则,那些后缀统统被认为是文件名,如:
.c.o: foo.h
$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<
这个例子,就是说,文件".c.o"依赖于文件"foo.h",而不是我们想要的这样:
%.o: %.c foo.h
$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<
后缀规则中,如果没有命令,那是毫无意义的。因为他也不会移去内建的隐含规则。
而要让make知道一些特定的后缀,我们可以使用伪目标".SUFFIXES"来定义或是删除,如:
.SUFFIXES: .hack .win
把后缀.hack和.win加入后缀列表中的末尾。
.SUFFIXES: # 删除默认的后缀
.SUFFIXES: .c .o .h # 定义自己的后缀
先清楚默认后缀,后定义自己的后缀列表。
make的参数"-r"或"-no-builtin-rules"也会使用得默认的后缀列表为空。而变量"SUFFIXE"被用来定义默认的后缀列表,你可以用".SUFFIXES"来改变后缀列表,但请不要改变变量"SUFFIXE"的值。
七、隐含规则搜索算法
比如我们有一个目标叫 T。下面是搜索目标T的规则的算法。请注意,在下面,我们没有提到后缀规则,原因是,所有的后缀规则在Makefile被载入内存时,会被转换成模式规则。如果目标是"archive(member)"的函数库文件模式,那么这个算法会被运行两次,第一次是找目标T,如果没有找到的话,那么进入第二次,第二次会把"member"当作T来搜索。
1、把T的目录部分分离出来。叫D,而剩余部分叫N。(如:如果T是"src/foo.o",那么,D就是"src/",N就是"foo.o")
2、创建所有匹配于T或是N的模式规则列表。
3、如果在模式规则列表中有匹配所有文件的模式,如"%",那么从列表中移除其它的模式。
4、移除列表中没有命令的规则。
5、对于第一个在列表中的模式规则:
1)推导其"茎"S,S应该是T或是N匹配于模式中"%"非空的部分。
2)计算依赖文件。把依赖文件中的"%"都替换成"茎"S。如果目标模式中没有包含斜框字符,而把D加在第一个依赖文件的开头。
3)测试是否所有的依赖文件都存在或是理当存在。(如果有一个文件被定义成另外一个规则的目标文件,或者是一个显式规则的依赖文件,那么这个文件就叫"理当存在")
4)如果所有的依赖文件存在或是理当存在,或是就没有依赖文件。那么这条规则将被采用,退出该算法。
6、如果经过第5步,没有模式规则被找到,那么就做更进一步的搜索。对于存在于列表中的第一个模式规则:
1)如果规则是终止规则,那就忽略它,继续下一条模式规则。
2)计算依赖文件。(同第5步)
3)测试所有的依赖文件是否存在或是理当存在。
4)对于不存在的依赖文件,递归调用这个算法查找他是否可以被隐含规则找到。
5)如果所有的依赖文件存在或是理当存在,或是就根本没有依赖文件。那么这条规则被采用,退出该算法。
7、如果没有隐含规则可以使用,查看".DEFAULT"规则,如果有,采用,把".DEFAULT"的命令给T使用。
一旦规则被找到,就会执行其相当的命令,而此时,我们的自动化变量的值才会生成。
使用make更新函数库文件
———————————
函数库文件也就是对Object文件(程序编译的中间文件)的打包文件。在Unix下,一般是由命令"ar"来完成打包工作。
一、函数库文件的成员
一个函数库文件由多个文件组成。你可以以如下格式指定函数库文件及其组成:
archive(member)
这个不是一个命令,而一个目标和依赖的定义。一般来说,这种用法基本上就是为了"ar"命令来服务的。如:
foolib(hack.o) : hack.o
ar cr foolib hack.o
如果要指定多个member,那就以空格分开,如:
foolib(hack.o kludge.o)
其等价于:
foolib(hack.o) foolib(kludge.o)
你还可以使用Shell的文件通配符来定义,如:
foolib(*.o)
二、函数库成员的隐含规则
当make搜索一个目标的隐含规则时,一个特殊的特性是,如果这个目标是"a(m)"形式的,其会把目标变成"(m)"。于是,如果我们的成员是"%.o"的模式定义,并且如果我们使用"make foo.a(bar.o)"的形式调用Makefile时,隐含规则会去找"bar.o"的规则,如果没有定义bar.o的规则,那么内建隐含规则生效,make会去找bar.c文件来生成bar.o,如果找得到的话,make执行的命令大致如下:
cc -c bar.c -o bar.o
ar r foo.a bar.o
rm -f bar.o
还有一个变量要注意的是"$%",这是专属函数库文件的自动化变量,有关其说明请参见"自动化变量"一节。
三、函数库文件的后缀规则
你可以使用"后缀规则"和"隐含规则"来生成函数库打包文件,如:
.c.a:
$(CC) $(CFLAGS) $(CPPFLAGS) -c $< -o $*.o
$(AR) r $@ $*.o
$(RM) $*.o
其等效于:
(%.o) : %.c
$(CC) $(CFLAGS) $(CPPFLAGS) -c $< -o $*.o
$(AR) r $@ $*.o
$(RM) $*.o
四、注意事项
在进行函数库打包文件生成时,请小心使用make的并行机制("-j"参数)。如果多个ar命令在同一时间运行在同一个函数库打包文件上,就很有可以损坏这个函数库文件。所以,在make未来的版本中,应该提供一种机制来避免并行操作发生在函数打包文件上。
但就目前而言,你还是应该不要尽量不要使用"-j"参数。
后序
——
终于到写结束语的时候了,以上基本上就是GNU make的Makefile的所有细节了。其它的产商的make基本上也就是这样的,无论什么样的make,都是以文件的依赖性为基础的,其基本是都是遵循一个标准的。这篇文档中80%的技术细节都适用于任何的make,我猜测"函数"那一章的内容可能不是其它make所支持的,而隐含规则方面,我想不同的make会有不同的实现,我没有精力来查看GNU的make和VC的nmake、BCB的make,或是别的UNIX下的make有些什么样的差别,一是时间精力不够,二是因为我基本上都是在Unix下使用make,以前在SCO Unix和IBM的AIX,现在在Linux、Solaris、HP-UX、AIX和Alpha下使用,Linux和Solaris下更多一点。不过,我可以肯定的是,在Unix下的make,无论是哪种平台,几乎都使用了Richard Stallman开发的make和cc/gcc的编译器,而且,基本上都是GNU的make(公司里所有的UNIX机器上都被装上了GNU的东西,所以,使用GNU的程序也就多了一些)。GNU的东西还是很不错的,特别是使用得深了以后,越来越觉得GNU的软件的强大,也越来越觉得GNU的在操作系统中(主要是Unix,甚至Windows)"杀伤力"。
对于上述所有的make的细节,我们不但可以利用make这个工具来编译我们的程序,还可以利用make来完成其它的工作,因为规则中的命令可以是任何Shell之下的命令,所以,在Unix下,你不一定只是使用程序语言的编译器,你还可以在Makefile中书写其它的命令,如:tar、awk、mail、sed、cvs、compress、ls、rm、yacc、rpm、ftp……等等,等等,来完成诸如"程序打包"、"程序备份"、"制作程序安装包"、"提交代码"、"使用程序模板"、"合并文件"等等五花八门的功能,文件操作,文件管理,编程开发设计,或是其它一些异想天开的东西。比如,以前在书写银行交易程序时,由于银行的交易程序基本一样,就见到有人书写了一些交易的通用程序模板,在该模板中把一些网络通讯、数据库操作的、业务操作共性的东西写在一个文件中,在这些文件中用些诸如"@@@N、###N"奇怪字串标注一些位置,然后书写交易时,只需按照一种特定的规则书写特定的处理,最后在make时,使用awk和sed,把模板中的"@@@N、###N"等字串替代成特定的程序,形成C文件,然后再编译。这个动作很像数据库的"扩展C"语言(即在C语言中用"EXEC SQL"的样子执行SQL语句,在用cc/gcc编译之前,需要使用"扩展C"的翻译程序,如cpre,把其翻译成标准C)。如果你在使用make时有一些更为绝妙的方法,请记得告诉我啊。
回头看看整篇文档,不觉记起几年前刚刚开始在Unix下做开发的时候,有人问我会不会写Makefile时,我两眼发直,根本不知道在说什么。一开始看到别人在vi中写完程序后输入"!make"时,还以为是vi的功能,后来才知道有一个Makefile在作怪,于是上网查啊查,那时又不愿意看英文,发现就根本没有中文的文档介绍Makefile,只得看别人写的Makefile,自己瞎碰瞎搞才积累了一点知识,但在很多地方完全是知其然不知所以然。后来开始从事UNIX下产品软件的开发,看到一个400人年,近200万行代码的大工程,发现要编译这样一个庞然大物,如果没有Makefile,那会是多么恐怖的一样事啊。于是横下心来,狠命地读了一堆英文文档,才觉得对其掌握了。但发现目前网上对Makefile介绍的文章还是少得那么的可怜,所以想写这样一篇文章,共享给大家,希望能对各位有所帮助。
现在我终于写完了,看了看文件的创建时间,这篇技术文档也写了两个多月了。发现,自己知道是一回事,要写下来,跟别人讲述又是另外一回事,而且,现在越来越没有时间专研技术细节,所以在写作时,发现在阐述一些细节问题时很难做到严谨和精练,而且对先讲什么后讲什么不是很清楚,所以,还是参考了一些国外站点上的资料和题纲,以及一些技术书籍的语言风格,才得以完成。整篇文档的提纲是基于GNU的Makefile技术手册的提纲来书写的,并结合了自己的工作经验,以及自己的学习历程。因为从来没有写过这么长,这么细的文档,所以一定会有很多地方存在表达问题,语言歧义或是错误。因些,我迫切地得等待各位给我指证和建议,以及任何的反馈。
最后,还是利用这个后序,介绍一下自己。我目前从事于所有Unix平台下的软件研发,主要是做分布式计算/网格计算方面的系统产品软件,并且我对于下一代的计算机革命——网格计算非常地感兴趣,对于分布式计算、P2P、Web Service、J2EE技术方向也很感兴趣,同时,对于项目实施、团队管理、项目管理也小有心得,希望同样和我战斗在“技术和管理并重”的阵线上的年轻一代,能够和我多多地交流。我的MSN是:haoel@hotmail.com(常用),QQ是:753640(不常用)。(注:请勿给我MSN的邮箱发信,由于hotmail的垃圾邮件导致我拒收这个邮箱的所有来信)
我欢迎任何形式的交流,无论是讨论技术还是管理,或是其它海阔天空的东西。除了政治和娱乐新闻我不关心,其它只要积极向上的东西我都欢迎!
最最后,我还想介绍一下make程序的设计开发者。
首当其冲的是: Richard Stallman
开源软件的领袖和先驱,从来没有领过一天工资,从来没有使用过Windows操作系统。对于他的事迹和他的软件以及他的思想,我无需说过多的话,相信大家对这个人并不比我陌生,这是他的主页:http://www.stallman.org/ 。
第二位是:Roland McGrath
个人主页是:http://www.frob.com/~roland/ ,下面是他的一些事迹:
1) 合作编写了并维护GNU make。
2) 和Thomas Bushnell一同编写了GNU Hurd。
3) 编写并维护着GNU C library。
4) 合作编写并维护着部分的GNU Emacs。
在此,向这两位开源项目的斗士致以最真切的敬意。
(全文完)
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/liang13664759/archive/2007/09/04/1771246.aspx
bi5tYWl6dW8uY29tL2FjdGl2ZS9hY3RpdmVfankyLmh0bQ==
发表评论
-
文件结束符
2012-02-29 15:13 910c++练习中while循环输入需要文件结束符或者错误输入才能退 ... -
静态数组与动态数组
2012-02-29 10:44 3174数组是程序设计中是一个非常重要的概念。数组是一个用于收集大量类 ... -
source insight快捷键及使用技巧
2010-11-12 11:26 1780退出程序 ... -
关于scanf对输入非法字符的检查和处理
2010-11-11 11:18 4311由于函数scanf(),不做参数类型的匹配检查,因此,用户输入 ... -
makefile missing separator
2010-11-08 16:06 1213objects = HelloWorld.o run:$(o ... -
warning: no newline at end of file
2010-11-08 15:57 967解决的办法: 在最后一行敲一个回车, 然后保存, 重新编译. ... -
return type of 'main' is not `int'
2010-11-08 15:56 1105#include"stdio.h" vo ... -
Linux makefile 教程(五)
2010-10-09 12:22 1013示例一: ifdef ERROR_001 ... -
Linux makefile 教程(四)
2010-10-09 12:18 1354一、示例 下面的例子,判断$(CC)变量是否“gcc”,如果 ... -
Linux makefile 教程(三)
2010-10-09 12:17 1164一、变量的基础 变量在声明时需要给予初值,而在使用时,需要给 ... -
Linux makefile 教程(二)
2010-10-09 12:16 1023七、静态模式 静态模 ... -
Linux makefile 教程(一)
2010-10-09 12:10 1107网上的教程,觉得挺不 ... -
Linux下编译C程序
2010-10-09 11:59 1549GCC 支持了许多不同的 ... -
linux vim 使用详解
2010-10-09 11:47 1674在每个用户的主目录下,都有一个 vi 的配置文件". ... -
Linux vi编辑器
2010-09-27 11:29 1755#插入模式 【i】切换进入插入模式,从光标当前位置开始输入文 ...
相关推荐
内容概要:本文详细介绍了如何利用Matlab构建、优化和应用决策分类树。首先,讲解了数据准备阶段,将数据与程序分离,确保灵活性。接着,通过具体实例展示了如何使用Matlab内置函数如fitctree快速构建决策树模型,并通过可视化工具直观呈现决策树结构。针对可能出现的过拟合问题,提出了基于成本复杂度的剪枝方法,以提高模型的泛化能力。此外,还分享了一些实用技巧,如处理连续特征、保存模型、并行计算等,帮助用户更好地理解和应用决策树。 适合人群:具有一定编程基础的数据分析师、机器学习爱好者及科研工作者。 使用场景及目标:适用于需要进行数据分类任务的场景,特别是当需要解释性强的模型时。主要目标是教会读者如何在Matlab环境中高效地构建和优化决策分类树,从而应用于实际项目中。 其他说明:文中不仅提供了完整的代码示例,还强调了代码模块化的重要性,便于后续维护和扩展。同时,对于初学者来说,建议从简单的鸢尾花数据集开始练习,逐步掌握决策树的各项技能。
《营销调研》第7章-探索性调研数据采集.pptx
Assignment1_search_final(1).ipynb
美团优惠券小程序带举牌小人带菜谱+流量主模式,挺多外卖小程序的,但是都没有搭建教程 搭建: 1、下载源码,去微信公众平台注册自己的账号 2、解压到桌面 3、打开微信开发者工具添加小程序-把解压的源码添加进去-appid改成自己小程序的 4、在pages/index/index.js文件搜流量主广告改成自己的广告ID 5、到微信公众平台登陆自己的小程序-开发管理-开发设置-服务器域名修改成
《计算机录入技术》第十八章-常用外文输入法.pptx
基于Andorid的跨屏拖动应用设计实现源码,主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。
《网站建设与维护》项目4-在线购物商城用户管理功能.pptx
区块链_房屋转租系统_去中心化存储_数据防篡改_智能合约_S_1744435730
《计算机应用基础实训指导》实训五-Word-2010的文字编辑操作.pptx
《移动通信(第4版)》第5章-组网技术.ppt
ABB机器人基础.pdf
《综合布线施工技术》第9章-综合布线实训指导.ppt
很不错的一套站群系统源码,后台配置采集节点,输入目标站地址即可全自动智能转换自动全站采集!支持 https、支持 POST 获取、支持搜索、支持 cookie、支持代理、支持破解防盗链、支持破解防采集 全自动分析,内外链接自动转换、图片地址、css、js,自动分析 CSS 内的图片使得页面风格不丢失: 广告标签,方便在规则里直接替换广告代码 支持自定义标签,标签可自定义内容、自由截取、内容正则截取。可以放在模板里,也可以在规则里替换 支持自定义模板,可使用标签 diy 个性模板,真正做到内容上移花接木 调试模式,可观察采集性能,便于发现和解决各种错误 多条采集规则一键切换,支持导入导出 内置强大替换和过滤功能,标签过滤、站内外过滤、字符串替换、等等 IP 屏蔽功能,屏蔽想要屏蔽 IP 地址让它无法访问 ****高级功能*****· url 过滤功能,可过滤屏蔽不采集指定链接· 伪原创,近义词替换有利于 seo· 伪静态,url 伪静态化,有利于 seo· 自动缓存自动更新,可设置缓存时间达到自动更新,css 缓存· 支持演示有阿三源码简繁体互转· 代理 IP、伪造 IP、随机 IP、伪造 user-agent、伪造 referer 来路、自定义 cookie,以便应对防采集措施· url 地址加密转换,个性化 url,让你的 url 地址与众不同· 关键词内链功能· 还有更多功能等你发现…… 程序使用非常简单,仅需在后台输入一个域名即可建站,不限子域名,站群利器,无授权,无绑定限制,使用后台功能可对页面进行自定义修改,在程序后台开启生 成功能,只要访问页面就会生成一个本地文件。当用户再次访问的时候就直接访问网站本地的页面,所以目标站点无法访问了也没关系,我们的站点依然可以访问, 支持伪静态、伪原创、生成静态文件、自定义替换、广告管理、友情链接管理、自动下载 CSS 内的图。
【自然语言处理】文本分类方法综述:从基础模型到深度学习的情感分析系统设计
基于Andorid的下拉浏览应用设计实现源码,主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。
内容概要:本文详细介绍了一个原创的P2插电式混合动力系统Simulink模型,该模型基于逻辑门限值控制策略,涵盖了多个关键模块如工况输入、驾驶员模型、发动机模型、电机模型、制动能量回收模型、转矩分配模型、运行模式切换模型、档位切换模型以及纵向动力学模型。模型支持多种标准工况(WLTC、UDDS、EUDC、NEDC)和自定义工况,并展示了丰富的仿真结果,包括发动机和电机转矩变化、工作模式切换、档位变化、电池SOC变化、燃油消耗量、速度跟随和最大爬坡度等。此外,文章还深入探讨了逻辑门限值控制策略的具体实现及其效果,提供了详细的代码示例和技术细节。 适合人群:汽车工程专业学生、研究人员、混动汽车开发者及爱好者。 使用场景及目标:①用于教学和科研,帮助理解和掌握P2混动系统的原理和控制策略;②作为开发工具,辅助设计和优化混动汽车控制系统;③提供仿真平台,评估不同工况下的混动系统性能。 其他说明:文中不仅介绍了模型的整体架构和各模块的功能,还分享了许多实用的调试技巧和优化方法,使读者能够更好地理解和应用该模型。
内容概要:本文详细介绍了基于ADMM(交替方向乘子法)算法在电力系统分布式调度中的应用,特别是并行(Jacobi)和串行(Gauss-Seidel)两种不同更新模式的实现。文中通过MATLAB代码展示了这两种模式的具体实现方法,并比较了它们的优劣。并行模式适用于多核计算环境,能够充分利用硬件资源,尽管迭代次数较多,但总体计算时间较短;串行模式则由于“接力式”更新机制,通常收敛更快,但在计算资源有限的情况下可能会形成瓶颈。此外,文章还讨论了惩罚系数rho的自适应调整策略以及在电-气耦合系统优化中的应用实例。 适合人群:从事电力系统优化、分布式计算研究的专业人士,尤其是有一定MATLAB编程基础的研究人员和技术人员。 使用场景及目标:①理解和实现ADMM算法在电力系统分布式调度中的应用;②评估并行和串行模式在不同应用场景下的性能表现;③掌握惩罚系数rho的自适应调整技巧,提高算法收敛速度和稳定性。 其他说明:文章提供了详细的MATLAB代码示例,帮助读者更好地理解和实践ADMM算法。同时,强调了在实际工程应用中需要注意的关键技术和优化策略。
内容概要:本文深入研究了交错并联Buck变换器的工作原理、性能优势及其具体实现。文章首先介绍了交错并联Buck变换器相较于传统Buck变换器的优势,包括减小输出电流和电压纹波、降低开关管和二极管的电流应力、减小输出滤波电容容量等。接着,文章详细展示了如何通过MATLAB/Simulink建立该变换器的仿真模型,包括参数设置、电路元件添加、PWM信号生成及连接、电压电流测量模块的添加等。此外,还探讨了PID控制器的设计与实现,通过理论分析和仿真验证了其有效性。最后,文章通过多个仿真实验验证了交错并联Buck变换器在纹波性能、器件应力等方面的优势,并分析了不同控制策略的效果,如P、PI、PID控制等。 适合人群:具备一定电力电子基础,对DC-DC变换器特别是交错并联Buck变换器感兴趣的工程师和技术人员。 使用场景及目标:①理解交错并联Buck变换器的工作原理及其相对于传统Buck变换器的优势;②掌握使用MATLAB/Simulink搭建交错并联Buck变换器仿真模型的方法;③学习PID控制器的设计与实现,了解其在电源系统中的应用;④通过仿真实验验证交错并联Buck变换器的性能,评估不同控制策略的效果。 其他说明:本文不仅提供了详细的理论分析,还给出了大量可运行的MATLAB代码,帮助读者更好地理解和实践交错并联Buck变换器的设计与实现。同时,通过对不同控制策略的对比分析,为实际工程应用提供了有价值的参考。
《综合布线施工技术》第8章-综合布线工程案例.ppt
内容概要:本文详细介绍了基于STM32F103C8T6的K型热电偶温度控制仪的设计与实现。硬件部分涵盖了热电偶采集电路、OLED显示模块、蜂鸣器电路、风扇控制电路以及EEPROM存储模块。软件部分则涉及ADC配置、OLED刷新、PID控温算法、EEPROM参数存储、风扇PWM控制等多个方面的具体实现。文中不仅提供了详细的代码示例,还分享了许多调试经验和注意事项,如冷端补偿、DMA传输优化、I2C时钟配置、PWM频率选择等。 适合人群:具有一定嵌入式系统开发经验的工程师和技术爱好者。 使用场景及目标:适用于需要进行温度监测与控制的应用场景,如工业自动化、实验室设备等。目标是帮助读者掌握STM32F103C8T6在温度控制领域的应用技巧,提升硬件设计和软件编程能力。 其他说明:本文提供的工程文件包含Altium Designer的原理图PCB文件,便于二次开发。此外,文中还提到了一些扩展功能,如加入Modbus通信协议,供有兴趣的读者进一步探索。