昨天晚上洗澡时新想到一个可以有效测试index rebuild online的方式, 也就是同时使用10046与10704 的trace event再配合lock阻塞的机制来测试index rebuild online的过程.
测试的过程如下.
03 |
create table james_t as
|
04 |
select rownum id,dbms_random.string( 'l' ,20) user_name
|
06 |
connect by level <= 5e6;
|
08 |
create index james_t_pk on james_t (id);
|
11 |
update james_t set user_name = 'test 1' where rownum <= 1;
|
14 |
select /*+ rule */a.* from v$lock a,v$session b where a.sid = b.sid and b.username = 'JAMES' ;
|
17 |
alter session set events '10704 trace name context forever,level 10' ;
|
18 |
alter session set events '10046 trace name context forever,level 12' ;
|
19 |
alter index james_t_pk rebuild online;
|
24 |
update james_t set id = 5000000 + id where rownum <= 3e5;
|
28 |
update james_t set user_name = 'test 1' where rownum <= 1;
|
32 |
alter session set events = 'immediate trace name flush_cache' ;
|
37 |
SID SERIAL# OPNAME TARGET TARGET_DESC SOFAR TOTALWORK UNITS START_TIME LAST_UPDATE_TIME |
38 |
10 19 Sort Output 14759 14759 Blocks 07/28/2010 09:14:26 07/28/2010 09:14:41
|
1. 取得表上的Sub Share锁. 索引的object_id = 6399.
*** 2010-07-27 23:07:16.000
ksqcmi: TM,18fe,0 mode=2 timeout=21474836
ksqcmi: returns 0
2. 创建日志表.
"JAMES"."SYS_JOURNAL_6399"
create table "JAMES"."SYS_JOURNAL_6399" (C0 NUMBER, opcode char(1), partno number, rid rowid, primary key( C0 , rid ))
organization index TABLESPACE "USERS"
CREATE UNIQUE INDEX "JAMES"."SYS_IOT_TOP_6406" on "JAMES"."SYS_JOURNAL_6399"("C0","RID") INDEX ONLY TOPLEVEL TABLESPACE "USERS" NOPARALLEL
3. 请求表上的Share锁.
*** 2010-07-27 23:07:16.000
ksqcmi: TM,18fe,0 mode=4 timeout=21474836
WAIT #1: nam='enqueue' ela= 3072242 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 3072273 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 3072430 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 3071962 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 3072350 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 3072367 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 3072086 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 3072453 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 387366 p1=1414332420 p2=6398 p3=0
ksqcmi: returns 0
2010-07-27 23:07:16.000 + 24.965529 = 2010-07-27 23:07:40.966
--此时间与下面获取Table Sub Share Lock的时间仅相差20ms左右. 中间的时间主要为统计误差,,因为Trace中的输出是连续的.
4. 取得完毕之后,,立即获取表上的Sub Share锁.
*** 2010-07-27 23:07:41.000
ksqcmi: TM,18fe,0 mode=2 timeout=21474836
ksqcmi: returns 0
5. 读取基础表,,创建索引.
WAIT #1: nam='db file scattered read' ela= 42228 p1=5 p2=4709 p3=4
WAIT #1: nam='db file scattered read' ela= 326 p1=5 p2=4710 p3=3
WAIT #1: nam='db file scattered read' ela= 236 p1=5 p2=4711 p3=2
.................
WAIT #1: nam='db file scattered read' ela= 549 p1=5 p2=36357 p3=4
WAIT #1: nam='db file scattered read' ela= 481 p1=5 p2=36358 p3=3
6. 开始Sort并输出索引. (写入临时文件)
WAIT #1: nam='direct path write' ela= 6 p1=201 p2=19942 p3=31
WAIT #1: nam='direct path write' ela= 2 p1=201 p2=19973 p3=4
WAIT #1: nam='direct path write' ela= 2 p1=201 p2=19721 p3=31
WAIT #1: nam='direct path write' ela= 395 p1=201 p2=19752 p3=12
--继续从表上读取内容.
WAIT #1: nam='db file scattered read' ela= 476 p1=5 p2=36359 p3=2
WAIT #1: nam='db file sequential read' ela= 417 p1=5 p2=36360 p3=1
WAIT #1: nam='direct path write' ela= 6 p1=201 p2=19942 p3=31
WAIT #1: nam='direct path write' ela= 2 p1=201 p2=19973 p3=4
WAIT #1: nam='direct path write' ela= 2 p1=201 p2=19721 p3=31
WAIT #1: nam='direct path write' ela= 395 p1=201 p2=19752 p3=12
--从临时文件读出排好序的结果.
WAIT #1: nam='direct path read' ela= 211 p1=201 p2=19763 p3=1
WAIT #1: nam='direct path read' ela= 57865 p1=201 p2=27472 p3=31
WAIT #1: nam='direct path read' ela= 14829 p1=201 p2=34281 p3=31
..........
WAIT #1: nam='direct path read' ela= 14853 p1=201 p2=20342 p3=19
WAIT #1: nam='direct path read' ela= 16932 p1=201 p2=26315 p3=31
WAIT #1: nam='direct path read' ela= 12710 p1=201 p2=21154 p3=31
WAIT #1: nam='direct path read' ela= 16599 p1=201 p2=32412 p3=31
写索引文件,扩展segment信息.
select file# from file$ where ts#=:1
select type#,blocks,extents,minexts,maxexts,extsize,extpct,user#,iniexts,NVL(lists,65535),NVL(groups,65535),cachehint,hwmincr, NVL(spare1,0) from seg$ where ts#=:1 and file#=:2 and block#=:3
insert into seg$ (file#,block#,type#,ts#,blocks,extents,minexts,maxexts,extsize,extpct,user#,iniexts,lists,groups,cachehint,bitmapranges,scanhint, hwmincr, spare1) values (:1,:2,:3,:4,:5,:6,:7,:8,:9,:10,:11,:12,:13,:14,:15,0,0,:16,DECODE(:17,0,NULL,:17))
中间再夹杂部分
WAIT #1: nam='direct path read' ela= 20442 p1=201 p2=31559 p3=1
--结束Sort Output并使用Direct path write写入新索引.
WAIT #1: nam='direct path read' ela= 8504 p1=201 p2=19849 p3=1
WAIT #1: nam='direct path read' ela= 263 p1=201 p2=19974 p3=1
WAIT #1: nam='direct path read' ela= 46962 p1=201 p2=19721 p3=1
WAIT #1: nam='direct path write' ela= 359 p1=5 p2=48351 p3=7
WAIT #1: nam='direct path write' ela= 5 p1=5 p2=48358 p3=7
---在此时间点结束新索引的创建工作.
SID SERIAL# OPNAME TARGET TARGET_DESC SOFAR TOTALWORK UNITS START_TIME LAST_UPDATE_TIME
10 19 Sort Output 14759 14759 Blocks 07/28/2010 09:14:26 07/28/2010 09:14:41
7. 读取Journal表上的变更,,将变更Merge到新的索引上.
--从10046 的traced Event的角度看,,新的索引文件写完成,开始读取Journal表的内容,以merge新索引.
WAIT #1: nam='direct path read' ela= 23577 p1=201 p2=31718 p3=1
WAIT #1: nam='direct path read' ela= 60459 p1=201 p2=31877 p3=1
WAIT #1: nam='direct path write' ela= 5622 p1=5 p2=52496 p3=7
WAIT #1: nam='direct path write' ela= 3 p1=5 p2=52503 p3=2
WAIT #1: nam='db file sequential read' ela= 32390 p1=5 p2=397 p3=1
WAIT #1: nam='db file sequential read' ela= 34345 p1=5 p2=397 p3=1
WAIT #1: nam='db file sequential read' ela= 100004 p1=5 p2=52005 p3=1
--结束新索引的Merge工作.
WAIT #1: nam='db file sequential read' ela= 1521 p1=5 p2=32192 p3=1
WAIT #1: nam='db file sequential read' ela= 205 p1=5 p2=32192 p3=1
WAIT #1: nam='db file sequential read' ela= 252 p1=5 p2=32200 p3=1
WAIT #1: nam='db file sequential read' ela= 375 p1=5 p2=32200 p3=1
8. 请求表上的Share所.
--请求表上的Share 锁,,以准备结束索引重建..
*** 2010-07-28 09:15:17.000
ksqcmi: TM,18fe,0 mode=4 timeout=21474836
WAIT #1: nam='enqueue' ela= 3071546 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 3072536 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 3072024 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 3072293 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 3072416 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 3072140 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 3072175 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 3072294 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 3072249 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 3072318 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 3072184 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 3072216 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 3072247 p1=1414332420 p2=6398 p3=0
WAIT #1: nam='enqueue' ela= 1244788 p1=1414332420 p2=6398 p3=0
ksqcmi: returns 0
9. 读取刚刚阻塞Index Rebuild获取Share 锁所产生的Journal日志并将变更merge到索引上.
--说明,,由于Index Rebuild Online进程是做Enqueue Conversion,所以只可能有一个Session会阻塞此进程.
--此次需要Merge的变更量只是阻塞进程产生的变更量,因此一般情况下,,持有Share锁的时间比较短.
--但是会比第一次持有要稍长一点. 需要等后续清理对象的操作结束才能释放.
10. 删除Journal表
drop table "JAMES"."SYS_JOURNAL_6399"
9. 申请Journal表上的Exclusive 锁.
*** 2010-07-27 23:11:03.000
ksqcmi: TM,1906,0 mode=6 timeout=0
ksqcmi: returns 0
=====================
10. 结束索引重建,,修改相关数据字典表
--更新索引上的data_object_id.
update ind$ set ts#=:2,file#=:3,block#=:4,intcols=:5,type#=:6,flags=:7,property=:8,pctfree$=:9,initrans=:10,maxtrans=:11,blevel=:12,leafcnt=:13,distkey=:14,lblkkey=:15,dblkkey=:16,clufac=:17,cols=:18,analyzetime=:19,samplesize=:20,dataobj#=:21,degree=decode(:22,1,null,:22),instances=decode(:23,1,null,:23),rowcnt=:24,pctthres$=:31*256+:25, indmethod#=:26, trunccnt=:27,spare1=:28,spare4=:29,spare2=:30,spare6=:32where obj#=:1
bind 19: dty=2 mxl=22(22) mal=00 scl=00 pre=00 oacflg=08 oacfl2=1 size=24 offset=0
bfp=032cc81c bln=24 avl=03 flg=05
value=6405
bind 33: dty=2 mxl=22(22) mal=00 scl=00 pre=00 oacflg=08 oacfl2=1 size=24 offset=0
bfp=032cd8dc bln=22 avl=03 flg=05
value=6399
更新对象的data_object_id
update obj$ set obj#=:6,type#=:7,ctime=:8,mtime=:9,stime=:10,status=:11,dataobj#=:13,flags=:14,oid$=:15,spare1=:16, spare2=:17 where owner#=:1 and name=:2 and namespace=:3 and(remoteowner=:4 or remoteowner is null and :4 is null)and(linkname=:5 or linkname is null and :5 is null)and(subname=:12 or subname is null and :12 is null)
设置对象新关联的seg实体.通过ts#,header_file#,header_block#
update seg$ set type#=:4,blocks=:5,extents=:6,minexts=:7,maxexts=:8,extsize=:9,extpct=:10,user#=:11,iniexts=:12,lists=decode(:13, 65535, NULL, :13),groups=decode(:14, 65535, NULL, :14), cachehint=:15, hwmincr=:16, spare1=DECODE(:17,0,NULL,:17) where ts#=:1 and file#=:2 and block#=:3
执行Ojbect Checkpoint.
WAIT #1: nam='rdbms ipc reply' ela= 54 p1=5 p2=21474836 p3=0
WAIT #1: nam='rdbms ipc reply' ela= 44 p1=5 p2=21474836 p3=0
11. 到此索引Rebuild完成.
完整的Trace文件文件下载. james_ora_4268.trc.gz
相关推荐
内容概要:本文详细介绍了基于STM32单片机的激光雕刻机控制系统的设计。系统包括硬件设计、软件设计和机械结构设计,主要功能有可调节激光功率大小、改变雕刻速率、手动定位、精确雕刻及切割。硬件部分包括STM32最小系统、步进电机驱动模块、激光发生器控制电路、人机交互电路和串口通信电路。软件部分涉及STM32CubeMX配置、G代码解析、步进电机控制、激光功率调节和手动定位功能的实现。 适合人群:对嵌入式系统和激光雕刻机感兴趣的工程师和技术人员。 使用场景及目标:① 适用于需要高精度激光雕刻的应用场合;② 为开发类似的激光雕刻控制系统提供设计参考。 阅读建议:本文提供了详细的硬件和软件设计方案,读者应结合实际应用场景进行理解,重点关注电路设计和代码实现。
白色简洁风格的前端网站模板下载.zip
HarmonyException如何解决.md
sdfsdfdsfsdfs222
html+css+js学习代码html+css+js学习代码html+css+js学习代码 html+css+js学习代码html+css+js学习代码html+css+js学习代码 html+css+js学习代码html+css+js学习代码html+css+js学习代码 html+css+js学习代码html+css+js学习代码html+css+js学习代码 html+css+js学习代码html+css+js学习代码html+css+js学习代码 html+css+js学习代码html+css+js学习代码html+css+js学习代码 html+css+js学习代码html+css+js学习代码html+css+js学习代码 html+css+js学习代码html+css+js学习代码html+css+js学习代码 html+css+js学习代码html+css+js学习代码html+css+js学习代码 html+css+js学习代码html+css+js学习代码html+css+js学习代码 html+css+js学习代码html+css+js学习代码html+css+j
usbgps2.apk
白色简洁风格的家居建材网站模板下载.zip
EventEmitError解决办法.md
白色简洁风格的工艺品展览企业网站源码下载.zip
matlab调制解调 OFDM OTFS 16qam qpsk ldpc turbo在高斯白噪声,频率选择性衰落信道下的误比特率性能仿真,matlab代码 OFDM simulink 包括添加保护间隔(cp),信道均衡(ZF MMSE MRC MA LMSEE) 代码每行都有注释,适用于学习,附带仿真说明,完全不用担心看不懂
build(1).gradle
贴标飞达sw16全套技术资料100%好用.zip
其实这就是历年摘出来的
内容概要:本文针对大规模高分辨率遥感图像的处理问题,提出了一种基于图像分块的可扩展区域合并分割框架。传统的图像分块方法会导致分块边界上的伪影,影响最终结果。为解决这一问题,文中定义了稳定性边缘的概念,并给出了其数学表达,以确保分割结果与不分块时相同。此外,文章还介绍了一种高效的框架实现方法,用于在资源受限的设备上处理大型图像。 适合人群:从事遥感图像处理、计算机视觉及地理信息系统相关领域的研究人员和技术人员。 使用场景及目标:适用于需要处理大规模高分辨率遥感图像的应用场景,如环境监测、自然资源管理等。主要目标是提供一种能够高效处理大规模图像同时保持分割质量的方法。 其他说明:实验结果表明,所提出的算法不仅能够避免分块边界的伪影,而且能够在不同尺度下获得与不分块处理相同的分割结果。
白色简洁风格的手机图片展示博客网站模板.rar
白色简洁风格的外科医疗整站网站源码下载.zip
基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计),本资源中的源码都是经过本地编译过可运行的,评审分达到98分,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。 基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计)基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计)基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计)基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计)基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计)基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计)基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计)基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计)基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计)基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计)基于python知识图谱医
在线式缠绕膜机自动覆膜缠绕机sw16全套技术资料100%好用.zip
.archivetemp阅读天数.py