扩展Facebook到5亿用户以及以上
By Robert Johnson Translated By Jametong
今天对Facebook来讲,我们达到了Facebook的一个非常重要的里程碑-5亿的用户数.这对于我们这些从事技术与运维的工程师来讲尤其令人激动,是我们构建了有能力处理如此巨大规模的增长的系统.当我在4年前来到Facebook的时候,我们有700万用户(在当时看似已经是非常的数量了),这一路走来遇到的挑战远远超出我们的想像.
下面是我们处理的部分大数字(the Big Numbers):
- 5个亿的活跃用户数
- 每天1000亿的点击数
- 500亿的图片数
- 2万亿的缓存对象,每秒亿级的请求数
- 每天130TB的日志量
这些年,我们在此页面写了部分关于我们如何处理这么大规模数据的技术方案.今天,我将退后一步,来谈谈一些我们关于扩展(Scaling)的常用方法,以及部分我们用来解决此类扩展性问题的原则.如在Facebook本身一样,这些原则既涉及到技术也涉及到人.实际上,下面将要讨论的原则只有部分是完全技术相关的.在这一天结束的时候,是这些构建此系统并使其运转的人,我们用来扩展这些系统的最佳工具是我们可以处理任何问题的技术与运营团队.我最感到自豪的扩展统计指标是我们的每个工程师可以服务100万的用户,并且这个指标还在稳定地增长.
![](http://www.dbthink.com/wp-content/uploads/2010/07/facebook_user_metrics.jpg)
纵向扩展
它不是万能的,不过,它确实很重要.如果什么东西出现了爆发性的增长,处理它的唯一明智可行的方法就是将其分布到任意多数量的机器上.切记,计算机世界只有三个数字:0,1和n.
例如,考虑这样一种情况,用户数据库无法处理此负载.我们可以将其拆分成两个功能-比如说,账户与概要—并将他们放到不同的数据库中.这可能耗费掉我们一整天的时间,不过,也可能需要花费更多的工作,而且它只能扩展到两倍的容量.一旦完成此项工作,我们还必须开始下一步新的工作,而且下一步的工作会更加困难.相反,我们可以花费部分额外的时间来编写代码,以解决当两个用户不在同一个数据库中的情况.这可能比将代码拆成两半要耗费更多的工作时间,不过它可以在后续的很长时间都给我们带来收益.
注意,这样做并不会提高效率,实际上,它可能让情况变得更糟糕.效率是非常重要的,但是,我们认为它与扩展性(Scaling)是相互独立的项目.
快速响应
如果你查看我们的增长曲线,你将发现不到它有平稳的时候.我们从来就没有坐下来深呼吸、自我恭维一番、并考虑下一步该如何做的时间.每周,我们都会遭遇更大的挑战.
当然,我们对此图的最终走向有不错的注意,但是,每个规模级别上都会有惊喜.我们可用来处理这些惊喜的最佳方式是,拥有可以灵活应对并快速解决问题的技术与运维团队.快速响应也使得我们可以尝试更多的事情,来检验哪个才是在实践中真正可用的.我们发现,保持这种灵活性要远远比任何其他技术决定来的重要.
渐进变更
我们发现,保持快速移动的最好方式是进行大量的小的变更,并衡量做了这些变更后系统的反应.这并不意味着我们不去做大事,它仅仅表示只要有可能,我们都将其拆分成大量的独立的小块.与此相反,很多开发哲学尝试做批量变更.
即使有些东西无法在功能上对其进行拆分,我们也尝试逐步地推出.这可能意味着一次迁移一部分用户或者一部分机器,甚或构建一个与老系统完全并行的系统,并在我们衡量效果的时候缓慢地将流量切换过来.
渐进变更的伟大之处在于,只要有东西与你期望的不一致,你立刻就能发现.与直觉不同,这样做最终让保持系统稳定变更更加容易.
当生产环境有问题时,修复它的最困难的部分可能就是问题定位了.如果只有一个变更的话,问题的定位就简单多了.在传统模型中,当你有几个星期甚至几个月的变更一起生效时,定位具体哪个变更导致了问题可能是个梦魇.
度量一切
只有当你确实有能力监控系统在做什么时,你才可以做大量的小的变更,并监控系统在做什么.在Facebook,我们收集巨量的数据,任一特定的服务器都会输出几十上百个可制作成图表的指标.这不仅仅包含类似于CPU与内存等系统级别的内容,还包含应用级别的统计信息,我们可以据此判断为什么发生这样的事情.
当他们有问题时(真正有趣的问事情只会出现在生产环境),统计信息来自真实的发生问题的生产环境机器这一点非常重要.这些统计必须来自所有的机器,因为大量重要的影响都被平均数隐藏了,只是出现在分布图上,特别是95%或99%的百分位上.
我们构建了多个用来收集、分析这些数据的工具,并已经将它们发布到了开源社区,其中包含Hive与Scribe.
小而独立的团队
当我开始在Facebook工作时,我是图片处理模块团队的两个人之一.这很疯狂,但是,现在我们已经是一个”大”公司了.我们图片处理模块有三个人.我们每个人都了解图片处理模块的所有底细,都可以独立地做相关决定.因此,当需要对图片处理模块做什么变更时,都可以快速而准确地做好此变更.
![](http://dl.iteye.com/upload/attachment/452158/a243c767-8ff0-3f73-98bc-809afbf51b06.jpg)
控制权与责任
如果没有开发与运营团队地无缝合作,以及他们如同事一个团队一样的去解决问题,上述原则都将无法实施.对于这一点,说易行难,但是,我们有一个非常有用的基本原则.
对一件事情负责的人必须对这件事有控制权.
这一点看似非常明显,但实际情况通常不是这样.经典的例子是一个人发布另一个人写的代码.发布代码的人好像对此负责,但实际上是写这个代码的对此有控制权.这就将发布此代码的人置于一个艰难的境地,他们仅有的选择是要么发布此代码,要么对冒险对可能出现的问题承担责任,因此,他们有强烈的动机拒绝发布.另一方面,如果写此代码的人感觉自己并不负责此功能是否有效,这个功能很可能就无法有效工作.
在Facebook,我们每天都会往网站发布代码,是写这些代码的人对此具体负责.看到自己创建的东西被5亿的人使用是令人振奋并震撼人心的.看到它出问题就更加震撼人心了. 关于如果给这5亿的用户带来伟大的软件,我们所知道的最好的方式是让对此事的重要性有深刻理解,对此事有深刻理解并有控制权的人来做正确的决定.
5亿之外
我们非常自豪,我们创建了一个5亿人想要使用的网站,这个5亿人正在使用的网站仍然在工作.但这确实仅仅是一个开始. 我们希望在不远的将来,我们会有另外5个亿的用户,这些原则将帮助我们克服后面将要面对的任何新的挑战.
Bobby, 技术总监, 比他4年前对大数字(Big Numbers)有了完全不同的理解.
相关推荐
风光储直流微电网Simulink仿真模型:光伏发电、风力发电与混合储能系统的协同运作及并网逆变器VSR的研究,风光储直流微电网Simulink仿真模型:MPPT控制、混合储能系统、VSR并网逆变器的设计与实现,风光储、风光储并网直流微电网simulink仿真模型。 系统由光伏发电系统、风力发电系统、混合储能系统(可单独储能系统)、逆变器VSR?大电网构成。 光伏系统采用扰动观察法实现mppt控制,经过boost电路并入母线; 风机采用最佳叶尖速比实现mppt控制,风力发电系统中pmsg采用零d轴控制实现功率输出,通过三相电压型pwm变器整流并入母线; 混合储能由蓄电池和超级电容构成,通过双向DCDC变器并入母线,并采用低通滤波器实现功率分配,超级电容响应高频功率分量,蓄电池响应低频功率分量,有限抑制系统中功率波动,且符合储能的各自特性。 并网逆变器VSR采用PQ控制实现功率入网。 ,风光储; 直流微电网; simulink仿真模型; 光伏发电系统; 最佳叶尖速比控制; MPPT控制; Boost电路; 三相电压型PWM变换器;
以下是针对初学者的 **51单片机入门教程**,内容涵盖基础概念、开发环境搭建、编程实践及常见应用示例,帮助你快速上手。
【Python毕设】根据你提供的课程代码,自动排出可行课表,适用于西工大选课_pgj
【毕业设计】[零食商贩]-基于vue全家桶+koa2+sequelize+mysql搭建的移动商城应用
电动汽车充电背景下的微电网谐波抑制策略与风力发电系统仿真研究,电动汽车充电微电网的谐波抑制策略与风力发电系统仿真研究,基于电动汽车充电的微电网谐波抑制策略研究,包括电动汽车充电负 载模型,风电模型,光伏发现系统,储能系统,以及谐波处理模块 风力发电系统仿真 ,电动汽车充电负载模型; 风电模型; 光伏发现系统; 储能系统; 谐波处理模块; 风力发电系统仿真,电动汽车充电微电网的谐波抑制策略研究:整合负载模型、风电模型与光伏储能系统
Vscode部署本地Deepseek的continue插件windows版本
内容概要:本文详细介绍了滤波器的两个关键参数——截止频率(F0)和品质因素(Q),并探讨了不同类型的滤波器(包括低通、高通、带通和带阻滤波器)的设计方法及其特性。文章首先明确了F0和Q的基本概念及其在滤波器性能中的作用,接着通过数学推导和图形展示的方式,解释了不同Q值对滤波器频率响应的影响。文中特别指出,通过调整Q值可以控制滤波器的峰谷效果和滚降速度,进而优化系统的滤波性能。此外,还讨论了不同类型滤波器的具体应用场景,如低通滤波器适用于消除高频噪声,高通滤波器用于去除直流分量和低频干扰,而带通滤波器和带阻滤波器分别用于选取特定频段信号和排除不需要的频段。最后,通过对具体案例的解析,帮助读者更好地理解和应用相关理论。 适合人群:电子工程及相关领域的技术人员、研究人员以及高校学生,特别是那些需要深入了解滤波器设计原理的人群。 使用场景及目标:适用于从事模拟电路设计的专业人士,尤其是希望掌握滤波器设计细节和技术的应用场合。目标是让读者能够灵活运用Q值和F0来优化滤波器设计,提升系统的信噪比和选择性,确保信号的纯净性和完整性。
内容概要:本文主要讲述了利用QUARTUSⅡ进行电子设计自动化的具体步骤和实例操作,详细介绍了如何利用EDA技术在QUARTUSⅡ环境中设计并模拟下降沿D触发器的工作过程,重点探讨了系统规格设计、功能描述、设计处理、器件编译和测试四个步骤及相关的设计验证流程,如功能仿真、逻辑综合及时序仿真等内容,并通过具体的操作指南展示了电路设计的实际操作方法。此外还强调了QUARTUSⅡ作为一款集成了多种功能的综合平台的优势及其对于提高工作效率的重要性。 适用人群:电子工程、自动化等相关专业的学生或者工程师,尤其适用于初次接触EDA技术和QuartusⅡ的用户。 使用场景及目标:旨在帮助用户理解和掌握使用QUARTUSⅡ这一先进的EDA工具软件进行从概念设计到最后成品制作整个电路设计过程的方法和技巧。目标是在实际工作中能够熟练运用QUARTUSⅡ完成各类复杂电子系统的高效设计。 其他说明:文中通过具体的案例让读者更直观理解EDA设计理念和技术特点的同时也为进一步探索EDA领域的前沿课题打下了良好基础。此外它还提到了未来可能的发展方向,比如EDA工具的功能增强趋势等。
Simulink建模下的光储系统与IEEE33节点配电网的协同并网运行:光照强度变化下的储能系统优化策略与输出性能分析,Simulink模型下的光伏微网系统:光储协同,实现380v电压等级下的恒定功率并网与平抑波动,Simulink含光伏的IEEE33节点配电网模型 微网,光储系统并网运行 光照强度发生改变时,储能可以有效配合光伏进行恒定功率并网,平抑波动,实现削峰填谷。 总的输出有功为270kw(图23) 无功为0 检验可以并网到电压等级为380v的电网上 逆变侧输出电压电流稳定(图4) ,Simulink; 含光伏; 配电网模型; 微网; 光储系统; 储能配合; 恒定功率并网; 电压等级; 逆变侧输出。,Simulink光伏微网模型:光储协同并网运行,实现功率稳定输出
基于Andres ELeon新法的双馈风机次同步振荡抑制策略:附加阻尼控制(SDC)的实践与应用,双馈风机次同步振荡的抑制策略研究:基于转子侧附加阻尼控制(SDC)的应用与效能分析,双馈风机次同步振荡抑制策略(一) 含 基于转子侧附加阻尼控制(SDC)的双馈风机次同步振荡抑制,不懂就问, 附加阻尼控制 (SDC)被添加到 RSC 内部控制器的q轴输出中。 这种方法是由Andres ELeon在2016年提出的。 该方法由增益、超前滞后补偿器和带通滤波器组成。 采用实测的有功功率作为输入信号。 有关更多信息,你可以阅读 Andres ELeon 的lunwen。 附lunwen ,关键词:双馈风机、次同步振荡、抑制策略;转子侧附加阻尼控制(SDC);RSC内部控制器;Andres ELeon;增益;超前滞后补偿器;带通滤波器;实测有功功率。,双馈风机次同步振荡抑制技术:基于SDC与RSCq轴控制的策略研究
springboot疫情防控期间某村外出务工人员信息管理系统--
高效光伏并网发电系统MATLAB Simulink仿真设计与MPPT技术应用及PI调节闭环控制,光伏并网发电系统MATLAB Simulink仿真设计:涵盖电池、BOOST电路、逆变电路及MPPT技术效率提升,光伏并网发电系统MATLAB Simulink仿真设计。 该仿真包括电池,BOOST升压电路,单相全桥逆变电路,电压电流双闭环控制部分;应用MPPT技术,提高光伏发电的利用效率。 采用PI调节方式进行闭环控制,SPWM调制,采用定步长扰动观测法,对最大功率点进行跟踪,可以很好的提高发电效率和实现并网要求。 ,光伏并网发电系统; MATLAB Simulink仿真设计; 电池; BOOST升压电路; 单相全桥逆变电路; 电压电流双闭环控制; MPPT技术; PI调节方式; SPWM调制; 定步长扰动观测法。,光伏并网发电系统Simulink仿真设计:高效MPPT与PI调节控制策略
PFC 6.0高效循环加载系统:支持半正弦、半余弦及多级变荷载功能,PFC 6.0循环加载代码:支持半正弦、半余弦及多级变荷载的强大功能,PFC6.0循环加载代码,支持半正弦,半余弦函数加载,中间变荷载等。 多级加载 ,PFC6.0; 循环加载代码; 半正弦/半余弦函数加载; 中间变荷载; 多级加载,PFC6.0多级半正弦半余弦循环加载系统
某站1K的校园跑腿小程序 多校园版二手市场校园圈子失物招领 食堂/快递代拿代买跑腿 多校版本,多模块,适合跑腿,外卖,表白,二手,快递等校园服务 需要自己准备好后台的服务器,已认证的小程序,备案的域名!
【Python毕设】根据你提供的课程代码,自动排出可行课表,适用于西工大选课
COMSOL锂枝晶模型:五合一的相场、浓度场与电场模拟研究,涵盖单枝晶定向生长、多枝晶生长及无序生长等多元现象的探索,COMSOL锂枝晶模型深度解析:五合一技术揭示单枝晶至雪花枝晶的生长机制与物理场影响,comsol锂枝晶模型 五合一 单枝晶定向生长、多枝晶定向生长、多枝晶随机生长、无序生长随机形核以及雪花枝晶,包含相场、浓度场和电场三种物理场(雪花枝晶除外),其中单枝晶定向生长另外包含对应的参考文献。 ,comsol锂枝晶模型; 五合一模型; 单枝晶定向生长; 多枝晶定向生长; 多枝晶随机生长; 无序生长随机形核; 雪花枝晶; 相场、浓度场、电场物理场; 参考文献,COMSOL锂枝晶模型:多场景定向生长与相场电场分析
嵌入式大学生 点阵代码
那个有delphi12 tedgebrowser 使用的dll
基于DQN算法的微网储能优化调度与能量管理:深度强化学习的应用与实践,基于DQN算法的微网储能优化调度与能量管理:深度强化学习的应用与实践,基于DQN算法的微网储能运行优化与能量管理 关键词:微网 优化调度 储能优化 深度强化学习 DQN 编程语言:python 参考文献:《Explainable AI Deep Reinforcement Learning Agents for Residential Demand Side Cost Savings in Smart Grids》 内容简介: 受深层强化学习(RL)最新进展的激励,我们开发了一个RL代理来管理家庭中存储设备的操作,旨在最大限度地节省需求侧的成本。 所提出的技术是数据驱动的,并且RL代理从头开始学习如何在可变费率结构下有效地使用能量存储设备,即收缩“黑匣子”的概念,其中代理所学的技术被忽略。 我们解释了RL-agent的学习过程,以及基于存储设备容量的策略。 ,微网; 优化调度; 储能优化; 深度强化学习; DQN; 家庭存储设备; 需求侧成本节省; 智能电网; RL代理; 能量存储设备。,基于DQN算法的微网储
内容概要:该文档为FM17580的原理图设计文件,重点介绍了这款非接触式IC卡读写芯片的电路设计细节。文档详细列出了各个元器件及其连接方式、引脚分配及具体值设定。特别值得注意的是,为了确保性能和可靠性,在PCB布局时强调了GND线需要尽量以最短路径连回FM175xx芯片的TVSS引脚附近,并且靠近电源输入端(TVDD)。同时明确了FM17580只兼容SPI通讯协议,其他如IIC或UART选项则不在支持范围内。此外还提供了关于降低能耗的选择——移除不必要的ADC检测电路,这对于一些特定应用场景非常有用。 适合人群:具备硬件开发经验和RFID/NFC领域基础知识的技术人员或研究人员。 使用场景及目标:适用于需要详细了解FM17580内部结构和技术特性的项目团队;旨在帮助工程师们快速上手搭建实验平台并测试FM17580的功能特性。主要目的是为实际应用开发提供技术支持和参考。 其他说明:文档最后附带了一些附加信息,包括设计师名字、公司名称以及审查流程的相关内容,但具体内容并未公开。此外还提到该文档是针对FM17580评估板(即FM17580Demo)的设计图纸。文中出现多次类似表格可能是不同版本之间的对比或者记录修改历史的部分内容。