`
hellowiki
  • 浏览: 34610 次
  • 性别: Icon_minigender_1
  • 来自: 南京
社区版块
存档分类
最新评论
阅读更多
<!-- Header --> <!-- / Header --> <!-- Main Body --> <!-- Left Sidebar --> <!-- / Left Sidebar --><!-- Main Column --> <!-- / Main Column --><!-- Right Sidebar --> 转自http://www.dbthink.com/?paged=5

a db thinker's home

An Oracle DBA's thought about DB,Web Architect etc..

 
 
 
 

文章归档

Oracle Enqueue Lock介绍

这是我准备今天下午给部门兄弟介绍的Enqueue Lock的ppt, 前面介绍部分纯理论部分没有做充分的测试,后半部分常用Enqueue Type的介绍, 都在以下环境做过测试.

OS : Windows XP (Intel T7250 ,3G mem) +
soft : Oracle 9201 32位

<!-- / Post -->

Cassandra Vs HBase

Cassandra vs HBase
By Vaibhav Puranik Translated By Jametong

我们是一家广告网络公司.我们需要存储展示与点击信息.我们在为我们的新项目评估多个不同的大批量数据(或nosql,或任何你喜欢的称呼)系统.过去8个月中,我们一直在一个测试产品上使用HBase,并且满意它的表现,但是,最近Cassandra的风头很高,因此,我们决定对它做个测试.我认为,从某些角度讲,Cassandra团队的推广做的很不错.你将发现,在Santa Monica,哪怕是非技术人员(诸如风险投资商、CEO以及产品经理)也会相互推荐使用Cassandra.

Cassandra给人的第一印象很好.它们的首页看上去比HBase更加专业也更加友好.安装并运行它也很简单.这个网站的文档很丰富.说实在话,安装并让其工作只花费了我5分钟的时间.

真正的挑战是理解Cassandra的数据模型,并尝试在我们的使用场景中实现它.我们很清楚如何在HBase中实现它,因为我们对HBase有相当不错的使用经验.虽然Cassandra也是从BigTable出继承了同样的数据模型,Cassandra与HBase之间还是有一些根本性的不同的.我试图用表格整理了两个系统之间的差异,如下:

Cassandra HBase
缺少类似于表的概念.所有的文档都告诉你,有多个Keyspace的情况不常见.这意味着你必须在一个集群中共享同一个key space.另外,新增keyspace需要重启集群才能生效. 存在表相关的概念.每个表都有它自己的key space. 这一点对我们来说很重要.添加/删除表都很容易,跟在RDBMS中一样.
使用字符串的Key.通常使用uuid作为Key.如果希望你的数据按照时间排序,可以使用TimeUUID. 使用二进制Key.通常将三个不同的项目组合在一起来构建一个Key.这意味着你可以搜索一个给定表中的多个键.
即使使用TimeUUID,也不会发生热点问题,因为Cassandra会对客户端请求做负载均衡. 如果Key的第一部分是时间或者序列数,就会发生热点问题.所有新的Key都会被插入同一个区域,一直到此区域被塞满(因而导致出现热点问题).
支持列排序 不支持列排序
超列(Super Column)概念使得你可以设计非常灵活也非常复杂的表结构. 不支持超列.不过可以设计一个类似与超列的结构,不过列名称与值都是二进制的.
没有便捷的方法来自增长一个列的值.实际上,最终一致性的不同特性使得更新/写入一条记录并在更新后立即读出非常困难.必须确保使用R+W>N来实现强一致性. 由于设计上就是一致性.提供了一个非常便捷的方法来自增计数器.非常适合做数据汇总.
刚开始支持Map Reduce接口.还需要有一个hadoop集群来运行它.需要将数据从Cassandra集群迁移到Hadoop集群.不适合对大型数据运行map reduce任务. 对Map Reduce的支持是原生的.HBase构建在Hadoop集群上.数据不需要做迁移.
如果不需要Hadoop的话,维护相对简单. 由于包含多个诸如Zookeeperr、Hadoop以及HBase本身的可活动组件,维护相对复杂.
到目前为止,还没有本地化的Java Api支持.没有Java文档.虽然是使用Java编写的,你还是必须用Thrift接口来与集群进行通讯. 有友好的本地Java API.比Cassandra更像是Java系统.由于我们的应用是基于Java的,这一点对我们很重要.
没有主节点,因此也没有单点故障. 虽然在概念上有一个主节点服务,HBase本身对它的依赖并不严重.即使在主节点宕机的情况下,HBase集群仍然可以正常提供数据服务.Hadoop的Namenode是一个单点故障.

在按照这种方式比较过数据模型与相关特性后,对我们来讲,HBase是明显的优胜者.我的看法是,如果你确实需要一致性,HBase是一个明显的选择.更进一步,本地化的Map Reduce支持、表概念以及可修改而且不用重启集群的简单的表结构是你不可忽略的加分项.HBase是一个更加成熟的平台.当人们说Twitter、Facebook在使用Cassandra时,他们忘记了这些公司同时也在使用HBase.实际上,Facebook最近雇用了一个HBase的代码提交者(Commiter),这清楚地表明Facebook对HBase的兴趣.

总之,我们全力支持HBase!!

<!-- / Post -->

Cassandra 的相关优化建议

以下内容摘自Eric Evans在OSCON上的ppt (Hands On Cassandra)

1. 设置Java的Heap Size.

1 # Arguments to pass to the JVM
2 JVM_OPTS=” \
3
4 -Xmx1G \
5

2. 设置memtable flush的策略.

1 # 达到的数据量大小(这个与memtable大小的设置一致).
2 memtable_throughput_in_mb: 64
3   
4 # 包含的对象数量(单位:百万)
5 memtable_operations_in_millions: 0.3
6   
7 # 经过的时间长度
8 memtable_flush_after_mins: 60

3. 缓存设置策略

1 keyspaces:
2 - name: Twissandra
3
4 column_families:
5 - name: User
6 keys_cached: 100           ## 缓存的Key的数量
7 preload_row_cache: true  ##是否预载行缓存
8 rows_cached: 1000         ##行缓存的键的数量.
9

4. 磁盘访问策略.

1 # Choices are auto, standard, mmap, and
2 # mmap_index_only.
3 disk_access_mode: auto

访问模式.

  • mmapped i/o 速度非常快,但是仅仅在64位的机器(显然不包含EC2的”small”实例)或者数据集相对较小时可行.
  • auto“是比较安全的选择,将在64位的JVM上使用mmap模式.
  • 其他值有”mmap“与“mmap_index_only“(通过仅对索引文件使用mmap以使你部分享受到mmap的好处),”standard“(buffer 相关参数仅仅对standard以及non-mmaped i/o有效)

(buffer相关参数包含SlicedBufferSizeInKB,FlushDataBufferSizeInMB,FlushIndexBufferSizeInMB)
此段内容翻译自Cassandra Wiki Storage Configuration

5. 相关内容监控

01 bin/nodetool –host <ARG> command
02   
03 --Command List
04 ring
05 info
06 cfstats
07 tpstats
08 compact
09 snapshot [name]
10 flush
11 drain
12 repair
13 decommission
14 move
15 loadbalance
16 get_endpoints < keyspace > < key >
17 global_snapshot [name]
18 clear_global_snapshot
19 truncate < keyspace > < cfname >
<!-- / Post -->

扩展Facebook到5亿用户以及以上.

扩展Facebook到5亿用户以及以上
By Robert Johnson Translated By Jametong

今天对Facebook来讲,我们达到了Facebook的一个非常重要的里程碑-5亿的用户数.这对于我们这些从事技术与运维的工程师来讲尤其令人激动,是我们构建了有能力处理如此巨大规模的增长的系统.当我在4年前来到Facebook的时候,我们有700万用户(在当时看似已经是非常的数量了),这一路走来遇到的挑战远远超出我们的想像.

下面是我们处理的部分大数字(the Big Numbers):

  • 5个亿的活跃用户数
  • 每天1000亿的点击数
  • 500亿的图片数
  • 2万亿的缓存对象,每秒亿级的请求数
  • 每天130TB的日志量

这些年,我们在此页面写了部分关于我们如何处理这么大规模数据的技术方案.今天,我将退后一步,来谈谈一些我们关于扩展(Scaling)的常用方法,以及部分我们用来解决此类扩展性问题的原则.如在Facebook本身一样,这些原则既涉及到技术也涉及到人.实际上,下面将要讨论的原则只有部分是完全技术相关的.在这一天结束的时候,是这些构建此系统并使其运转的人,我们用来扩展这些系统的最佳工具是我们可以处理任何问题的技术与运营团队.我最感到自豪的扩展统计指标是我们的每个工程师可以服务100万的用户,并且这个指标还在稳定地增长.

纵向扩展

它不是万能的,不过,它确实很重要.如果什么东西出现了爆发性的增长,处理它的唯一明智可行的方法就是将其分布到任意多数量的机器上.切记,计算机世界只有三个数字:0,1和n.

例如,考虑这样一种情况,用户数据库无法处理此负载.我们可以将其拆分成两个功能-比如说,账户与概要—并将他们放到不同的数据库中.这可能耗费掉我们一整天的时间,不过,也可能需要花费更多的工作,而且它只能扩展到两倍的容量.一旦完成此项工作,我们还必须开始下一步新的工作,而且下一步的工作会更加困难.相反,我们可以花费部分额外的时间来编写代码,以解决当两个用户不在同一个数据库中的情况.这可能比将代码拆成两半要耗费更多的工作时间,不过它可以在后续的很长时间都给我们带来收益.

注意,这样做并不会提高效率,实际上,它可能让情况变得更糟糕.效率是非常重要的,但是,我们认为它与扩展性(Scaling)是相互独立的项目.

快速响应

如果你查看我们的增长曲线,你将发现不到它有平稳的时候.我们从来就没有坐下来深呼吸、自我恭维一番、并考虑下一步该如何做的时间.每周,我们都会遭遇更大的挑战.

当然,我们对此图的最终走向有不错的注意,但是,每个规模级别上都会有惊喜.我们可用来处理这些惊喜的最佳方式是,拥有可以灵活应对并快速解决问题的技术与运维团队.快速响应也使得我们可以尝试更多的事情,来检验哪个才是在实践中真正可用的.我们发现,保持这种灵活性要远远比任何其他技术决定来的重要.

渐进变更

我们发现,保持快速移动的最好方式是进行大量的小的变更,并衡量做了这些变更后系统的反应.这并不意味着我们不去做大事,它仅仅表示只要有可能,我们都将其拆分成大量的独立的小块.与此相反,很多开发哲学尝试做批量变更.

即使有些东西无法在功能上对其进行拆分,我们也尝试逐步地推出.这可能意味着一次迁移一部分用户或者一部分机器,甚或构建一个与老系统完全并行的系统,并在我们衡量效果的时候缓慢地将流量切换过来.

渐进变更的伟大之处在于,只要有东西与你期望的不一致,你立刻就能发现.与直觉不同,这样做最终让保持系统稳定变更更加容易.

当生产环境有问题时,修复它的最困难的部分可能就是问题定位了.如果只有一个变更的话,问题的定位就简单多了.在传统模型中,当你有几个星期甚至几个月的变更一起生效时,定位具体哪个变更导致了问题可能是个梦魇.

度量一切

只有当你确实有能力监控系统在做什么时,你才可以做大量的小的变更,并监控系统在做什么.在Facebook,我们收集巨量的数据,任一特定的服务器都会输出几十上百个可制作成图表的指标.这不仅仅包含类似于CPU与内存等系统级别的内容,还包含应用级别的统计信息,我们可以据此判断为什么发生这样的事情.

当他们有问题时(真正有趣的问事情只会出现在生产环境),统计信息来自真实的发生问题的生产环境机器这一点非常重要.这些统计必须来自所有的机器,因为大量重要的影响都被平均数隐藏了,只是出现在分布图上,特别是95%或99%的百分位上.

我们构建了多个用来收集、分析这些数据的工具,并已经将它们发布到了开源社区,其中包含HiveScribe.

小而独立的团队

当我开始在Facebook工作时,我是图片处理模块团队的两个人之一.这很疯狂,但是,现在我们已经是一个”大”公司了.我们图片处理模块有三个人.我们每个人都了解图片处理模块的所有底细,都可以独立地做相关决定.因此,当需要对图片处理模块做什么变更时,都可以快速而准确地做好此变更.



 

控制权与责任

如果没有开发与运营团队地无缝合作,以及他们如同事一个团队一样的去解决问题,上述原则都将无法实施.对于这一点,说易行难,但是,我们有一个非常有用的基本原则.

对一件事情负责的人必须对这件事有控制权.

这一点看似非常明显,但实际情况通常不是这样.经典的例子是一个人发布另一个人写的代码.发布代码的人好像对此负责,但实际上是写这个代码的对此有控制权.这就将发布此代码的人置于一个艰难的境地,他们仅有的选择是要么发布此代码,要么对冒险对可能出现的问题承担责任,因此,他们有强烈的动机拒绝发布.另一方面,如果写此代码的人感觉自己并不负责此功能是否有效,这个功能很可能就无法有效工作.

在Facebook,我们每天都会往网站发布代码,是写这些代码的人对此具体负责.看到自己创建的东西被5亿的人使用是令人振奋并震撼人心的.看到它出问题就更加震撼人心了. 关于如果给这5亿的用户带来伟大的软件,我们所知道的最好的方式是让对此事的重要性有深刻理解,对此事有深刻理解并有控制权的人来做正确的决定.

5亿之外

我们非常自豪,我们创建了一个5亿人想要使用的网站,这个5亿人正在使用的网站仍然在工作.但这确实仅仅是一个开始. 我们希望在不远的将来,我们会有另外5个亿的用户,这些原则将帮助我们克服后面将要面对的任何新的挑战.

Bobby, 技术总监, 比他4年前对大数字(Big Numbers)有了完全不同的理解.

<!-- / Post -->

为什么Quora不使用NoSQL来做数据存储

本文算是对目前NoSQL的一篇比较不错的反思文章,不完全代表我个人的想法.

Quora是一家做互动问答的网站, 他们最近在自己的网站上提出了一个问题,即标题所示: 为什么Quora不使用NoSQL来做数据存储?

链接如下: http://www.quora.com/Why-does-Quora-use-MySQL-as-the-data-store-rather-than-NoSQLs-such-as-Cassandra-MongoDB-CouchDB-etc

我这边简要的翻译并总结以下:

from Adam D’Angelo, MySQL user since 2004

  • 1. 如果你在应用级别做数据分区,MySQL的伸缩性已经可以基本满足需要. Facebook在2008年的时候,他们的2个DBA差不多维护着1800个MySQL的服务器. 在这种情况下, 分区之间是不能做连接操作的, 不过NoSQL数据库也不允许这样做. Facebook并没有确认使用Cassandra来作为任何数据的主存储,看似收件箱是他们目前仅有的使用Cassandra的应用.

     

  • 2. 这些分布式数据库(例如Cassandra,MongoDB以及CouchDB)实际上扩展性与稳定性都没有那么好. Twitter显然在一年前就想从MySQL迁移到Cassandra了(他们目前已经调整策略了), 如果有人在一年前宣布使用超过1000台机器的集群来使用这些系统,我将重新考虑我的观点.

     

  • 3. 使用一种新技术来部署应用的主在线数据存储是非常冒风险的决定. 如果你丢失的你的数据库或者遇到了数据损坏, 这将是个灾难,这些数据可能永远也无法恢复回来, 如果你们是少数几个在生产环境大规模使用它的公司, 你将不得不祈求开发的怜悯,期待他们来修复bug或者解决伸缩性问题.

     

  • 4. 实际上,哪怕是在单台MySQL服务器上,你也可以走的很远,而不用考虑在应用层做拆分的问题. 你可以使用”向上扩展”的方式给一台机器配备大量的CPU以及大量的内存,并配备一个副本. 如果你可以在数据库之上再配置一个MemCached服务层的化(这是很容易向外扩展的),这时数据库就只需要考虑写操作了.你还可以使用S3(Simple Storage Service of Amazon)或者其他类似的分布式散列表来将数据库中的大对象字段移出来. 你并不需要考虑系统在10倍压力之后将如何伸缩,只要你有信心随着容量的增长,你知道如何对系统进行扩展就可以了.

     

  • 5. 手工在大量MySQL机器进行数据分区的很多问题都可以通过下面的方法来缓解,在应用层之下以及MySQL之上构建一个数据层,来对数据做自动分布. FriendFeed 描述了一个这种实现方式的很好的范例.

     

  • 6. 就我个人来讲,我相信关系数据模型是构建大部分应用(如Quora,以及大部分用户生产内容的网站)数据的”正确”的方式. 表结构的存在,使得数据可以在应用的多个版本之间保持一定的稳定性,他们可以部分地充当文档,并预防大量的bug. SQL语句使得你可以在必要的时候将计算推到数据这一块,而不是将大量的数据拉到应用端再来做处理. 我觉得,当某人最终用一种弱化的语义实现了分布式关系数据库的时候,”NoSQL”的风尚也就结束了.
<!-- / Post -->
  • 大小: 52.9 KB
分享到:
评论

相关推荐

    技嘉Z97X UD3H F9 增加NVME启动功能

    亲测可用

    《基于YOLOv8的音响设备识别系统》(包含源码、完整数据集、可视化界面、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

    资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。

    毕业设计物联网实战项目基于mqttd-centos7-v2.3.11.zip 配置的emqtt服务器,配套金大万翔物联网管理平台.zip

    【项目资源】: 物联网项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    毕设单片机实战项目基于ESP8266的家庭版简易开关.zip

    【项目资源】: 单片机项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    毕设单片机实战项目基于ESP8266制作的一个局域网关灯神器,还有一个OLED,用于显示实时时间和最近三天的天气信息。.zip

    【项目资源】: 单片机项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    毕业设计物联网实战项目基于树莓派wifi的物联网项目.zip

    【项目资源】: 物联网项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    IDE的护眼的主题的套件

    IDE护眼主题套件

    【新能源汽车】基于Matlab/Simulink的增程式电动车动力系统仿真模型设计与优化:功率跟随控制及能量流管理

    内容概要:文章详细介绍了基于Matlab/Simulink构建的增程式电动车仿真模型。该模型由电池、电机、发动机、整车动力学、控制策略和驾驶员模块六大组件构成,重点在于各模块间的能量流动逻辑。文中特别强调了功率跟随控制策略,通过PID闭环控制使发动机功率与电池需求动态匹配,优化了燃油经济性和SOC控制精度。此外,模型采用开放式架构,所有参数通过m脚本集中管理,便于修改和扩展。文章展示了模型在典型工况下的性能表现,并突出了其在科研和工程应用中的灵活性和实用性。; 适合人群:对新能源汽车技术感兴趣的工程师、研究人员以及高校相关专业师生。; 使用场景及目标:①用于研究增程式电动车的能量管理策略;②作为教学案例帮助学生理解复杂系统的建模方法;③为实际工程项目提供可复用的仿真平台。; 阅读建议:读者应重点关注模型的架构设计和关键控制算法实现,同时结合提供的代码片段进行实践操作,以便更好地掌握增程式电动车的工作原理及其优化方法。

    51a30-main.zip

    51a30-main.zip

    【Java数据库技术】索引类型与事务特性详解:提升SQL查询性能与数据一致性管理

    内容概要:本文详细介绍了多种类型的数据库索引及其应用场景,包括普通索引、唯一性索引、单个索引、复合索引、聚簇索引、非聚簇索引、主索引、外键索引、全文索引和空间索引。每种索引都有其独特的定义、要点和适用场景,并附有具体的SQL代码示例。此外,文章还对比了InnoDB和MyISAM两种存储引擎的特点,解释了脏读、不可重复读、可重复读和幻读的概念,并讨论了SQL优化的方法以及数据库事务的ACID特性。 适合人群:具备一定数据库基础知识的开发者、数据库管理员以及参与数据库设计和优化的技术人员。 使用场景及目标:①帮助开发者选择合适的索引类型以提高查询效率;②理解不同存储引擎的特点,选择最适合应用场景的存储引擎;③掌握事务隔离级别的概念,避免数据不一致问题;④学习SQL优化技巧,提升数据库性能;⑤理解ACID特性,确保数据库操作的一致性和可靠性。 阅读建议:本文内容较为全面且深入,建议读者结合实际项目需求,重点理解不同类型索引的应用场景,掌握SQL优化的基本原则,并熟悉事务处理的最佳实践。

    【MATLAB优化算法】基于MATLAB的优化算法实现与应用:涵盖梯度下降、线性规划、非线性规划及智能优化算法

    内容概要:本文详细介绍了MATLAB中优化算法的实现方法,涵盖确定性算法(如梯度下降法)和随机性算法(如遗传算法、粒子群优化)。文章首先讲解了梯度下降法和MATLAB优化工具箱的应用,展示了如何使用fmincon解决约束优化问题。接着,文章深入探讨了线性规划、非线性规划和多目标优化的理论和实践,提供了具体的MATLAB代码示例。此外,文中还介绍了遗传算法、粒子群优化和模拟退火算法的原理及应用,并通过实例展示了这些算法在实际问题中的使用。最后,文章讨论了优化算法在工程、金融和机器学习领域的高级应用,以及调试和优化的常见策略。 适合人群:具备一定编程基础,对优化算法感兴趣的工程师、研究人员和学生。 使用场景及目标:①理解优化算法的基础理论和实现方法;②掌握MATLAB优化工具箱的使用,解决线性、非线性、多目标优化问题;③学习遗传算法、粒子群优化和模拟退火算法的具体应用;④提高优化算法的性能和可靠性,解决实际工程、金融和机器学习问题。 阅读建议:本文内容丰富,涉及多种优化算法及其MATLAB实现,建议读者先掌握基本的优化理论和MATLAB编程基础,再逐步深入学习各类算法的具体应用。在学习过程中,结合提供的代码示例进行实践,并尝试调整参数以优化算法性能。

    python for appium ui automate test, it is something to update.

    this is for myself learn coding, change a pc debug.

    p111基于django的企业员工管理系统.zip

    项目资源包含:可运行源码+sql文件 适用人群:学习不同技术领域的小白或进阶学习者;可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 项目具有较高的学习借鉴价值,也可拿来修改、二次开发。 有任何使用上的问题,欢迎随时与博主沟通,博主看到后会第一时间及时解答。 开发语言:Python 框架:django Python版本:python3.8 数据库:mysql 5.7 数据库工具:Navicat 开发软件:PyCharm 浏览器:谷歌浏览器

    毕设单片机实战项目基于esp8266的太空人时钟小电视.zip

    【项目资源】: 单片机项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    电力电子MMC型STATCOM/SVG载波移相调制与电压均衡控制技术详解:从理论到实战调试经验分享

    内容概要:本文深入探讨了MMC型STATCOM/SVG的核心技术和调试技巧,重点讲解了载波移相调制(CPS-PWM)和电压均衡控制两大关键技术。载波移相调制通过为每个子模块设置不同的载波相位差,有效降低谐波含量并优化开关频率。电压均衡则分为桥臂内、桥臂间和相间三个层次,分别采用动态排序、比例控制和零序电压注入等方法,确保系统稳定运行。文章还分享了多个实战经验,如低压调试、红外热像仪检测以及避免参数设置不当引发的问题。; 适合人群:从事电力电子领域,特别是参与STATCOM/SVG项目的设计、开发和调试的技术人员。; 使用场景及目标:①理解MMC型STATCOM/SVG的工作原理和技术细节;②掌握载波移相调制的具体实现方法;③学习电压均衡控制的各种策略及其应用场景;④获取实际调试过程中常见问题的解决方案。; 阅读建议:本文涉及大量技术细节和实战经验,建议读者结合实际项目进行阅读,重点关注载波移相调制和电压均衡控制的具体实现,并参考提供的代码片段进行实践。

    liangmmm_finalll.scdoc

    liangmmm_finalll.scdoc

    区块链开发中Solidity语言的关键特性与应用解析

    内容概要:本文详细介绍了Solidity语言的核心概念和语法特性,涵盖结构体、函数修改器、事件、类型系统、数组、映射、操作符、合约可见性、构造函数、抽象合约、接口、继承、控制结构、异常处理和keccak256哈希函数等内容。通过这些知识点的讲解,帮助开发者理解如何构建高效、安全的智能合约。; 适合人群:对区块链开发感兴趣,尤其是希望深入了解以太坊智能合约开发的初学者及有一定编程基础的研发人员。; 使用场景及目标:①掌握Solidity语言的基本语法和高级特性,如结构体、函数修改器、事件等;②理解合约的可见性、继承、接口等面向对象编程特性;③学会使用keccak256等安全机制保障智能合约的安全性;④能够运用控制结构和异常处理编写健壮的合约逻辑。; 阅读建议:建议读者从基础语法开始逐步深入,结合实际案例进行练习。尤其要注意合约的安全性和性能优化,避免常见的漏洞和错误。在学习过程中,应多参考官方文档和其他优质资料,不断巩固和拓展知识体系。

    原型模式课上代码.zip

    原型模式课上代码.zip

    【锂电池管理】基于Simulink的双向DC-DC主动均衡电路与模糊控制算法:实现高效SOC差异调控

    内容概要:文章介绍了利用Simulink搭建锂电池组主动均衡系统的原理与实现方法。通过双向DC-DC主动均衡电路和模糊控制算法,解决了储能项目中电池包SOC(荷电状态)差异过大的问题。文中详细解释了关键代码逻辑,包括均衡状态切换、模糊控制器规则配置以及动态子系统使能技术的应用。特别提到当SOC最大差值超过设定阈值时,系统会自动启动均衡,并根据差值大小智能调整均衡电流。仿真结果显示,在处理突发状况(如某电池SOC突然下降)时,该系统能在短时间内恢复平衡。此外,文章还分享了调试过程中的一些实用技巧,如设置合理的均衡电流限值。; 适合人群:从事锂电池管理系统研发的技术人员,尤其是有一定MATLAB/Simulink使用经验的工程师。; 使用场景及目标:①解决储能系统中锂电池组SOC不一致的问题;②优化现有均衡策略,提高均衡效率;③学习如何在Simulink中实现复杂控制算法。; 其他说明:本文不仅提供了详细的代码示例和技术细节,还通过生动的比喻帮助读者更好地理解复杂的控制逻辑。建议读者在实践中结合理论知识进行调试和验证。

    毕业设计物联网实战项目基于ESP8266组建的智能安防系统.zip

    【项目资源】: 物联网项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

Global site tag (gtag.js) - Google Analytics