`
hellowiki
  • 浏览: 34394 次
  • 性别: Icon_minigender_1
  • 来自: 南京
社区版块
存档分类
最新评论
阅读更多
<!-- Header --> <!-- / Header --> <!-- Main Body --> <!-- Left Sidebar --> <!-- / Left Sidebar --><!-- Main Column --> <!-- / Main Column --><!-- Right Sidebar --> 转自http://www.dbthink.com/?paged=5

a db thinker's home

An Oracle DBA's thought about DB,Web Architect etc..

 
 
 
 

文章归档

Oracle Enqueue Lock介绍

这是我准备今天下午给部门兄弟介绍的Enqueue Lock的ppt, 前面介绍部分纯理论部分没有做充分的测试,后半部分常用Enqueue Type的介绍, 都在以下环境做过测试.

OS : Windows XP (Intel T7250 ,3G mem) +
soft : Oracle 9201 32位

<!-- / Post -->

Cassandra Vs HBase

Cassandra vs HBase
By Vaibhav Puranik Translated By Jametong

我们是一家广告网络公司.我们需要存储展示与点击信息.我们在为我们的新项目评估多个不同的大批量数据(或nosql,或任何你喜欢的称呼)系统.过去8个月中,我们一直在一个测试产品上使用HBase,并且满意它的表现,但是,最近Cassandra的风头很高,因此,我们决定对它做个测试.我认为,从某些角度讲,Cassandra团队的推广做的很不错.你将发现,在Santa Monica,哪怕是非技术人员(诸如风险投资商、CEO以及产品经理)也会相互推荐使用Cassandra.

Cassandra给人的第一印象很好.它们的首页看上去比HBase更加专业也更加友好.安装并运行它也很简单.这个网站的文档很丰富.说实在话,安装并让其工作只花费了我5分钟的时间.

真正的挑战是理解Cassandra的数据模型,并尝试在我们的使用场景中实现它.我们很清楚如何在HBase中实现它,因为我们对HBase有相当不错的使用经验.虽然Cassandra也是从BigTable出继承了同样的数据模型,Cassandra与HBase之间还是有一些根本性的不同的.我试图用表格整理了两个系统之间的差异,如下:

Cassandra HBase
缺少类似于表的概念.所有的文档都告诉你,有多个Keyspace的情况不常见.这意味着你必须在一个集群中共享同一个key space.另外,新增keyspace需要重启集群才能生效. 存在表相关的概念.每个表都有它自己的key space. 这一点对我们来说很重要.添加/删除表都很容易,跟在RDBMS中一样.
使用字符串的Key.通常使用uuid作为Key.如果希望你的数据按照时间排序,可以使用TimeUUID. 使用二进制Key.通常将三个不同的项目组合在一起来构建一个Key.这意味着你可以搜索一个给定表中的多个键.
即使使用TimeUUID,也不会发生热点问题,因为Cassandra会对客户端请求做负载均衡. 如果Key的第一部分是时间或者序列数,就会发生热点问题.所有新的Key都会被插入同一个区域,一直到此区域被塞满(因而导致出现热点问题).
支持列排序 不支持列排序
超列(Super Column)概念使得你可以设计非常灵活也非常复杂的表结构. 不支持超列.不过可以设计一个类似与超列的结构,不过列名称与值都是二进制的.
没有便捷的方法来自增长一个列的值.实际上,最终一致性的不同特性使得更新/写入一条记录并在更新后立即读出非常困难.必须确保使用R+W>N来实现强一致性. 由于设计上就是一致性.提供了一个非常便捷的方法来自增计数器.非常适合做数据汇总.
刚开始支持Map Reduce接口.还需要有一个hadoop集群来运行它.需要将数据从Cassandra集群迁移到Hadoop集群.不适合对大型数据运行map reduce任务. 对Map Reduce的支持是原生的.HBase构建在Hadoop集群上.数据不需要做迁移.
如果不需要Hadoop的话,维护相对简单. 由于包含多个诸如Zookeeperr、Hadoop以及HBase本身的可活动组件,维护相对复杂.
到目前为止,还没有本地化的Java Api支持.没有Java文档.虽然是使用Java编写的,你还是必须用Thrift接口来与集群进行通讯. 有友好的本地Java API.比Cassandra更像是Java系统.由于我们的应用是基于Java的,这一点对我们很重要.
没有主节点,因此也没有单点故障. 虽然在概念上有一个主节点服务,HBase本身对它的依赖并不严重.即使在主节点宕机的情况下,HBase集群仍然可以正常提供数据服务.Hadoop的Namenode是一个单点故障.

在按照这种方式比较过数据模型与相关特性后,对我们来讲,HBase是明显的优胜者.我的看法是,如果你确实需要一致性,HBase是一个明显的选择.更进一步,本地化的Map Reduce支持、表概念以及可修改而且不用重启集群的简单的表结构是你不可忽略的加分项.HBase是一个更加成熟的平台.当人们说Twitter、Facebook在使用Cassandra时,他们忘记了这些公司同时也在使用HBase.实际上,Facebook最近雇用了一个HBase的代码提交者(Commiter),这清楚地表明Facebook对HBase的兴趣.

总之,我们全力支持HBase!!

<!-- / Post -->

Cassandra 的相关优化建议

以下内容摘自Eric Evans在OSCON上的ppt (Hands On Cassandra)

1. 设置Java的Heap Size.

1 # Arguments to pass to the JVM
2 JVM_OPTS=” \
3
4 -Xmx1G \
5

2. 设置memtable flush的策略.

1 # 达到的数据量大小(这个与memtable大小的设置一致).
2 memtable_throughput_in_mb: 64
3   
4 # 包含的对象数量(单位:百万)
5 memtable_operations_in_millions: 0.3
6   
7 # 经过的时间长度
8 memtable_flush_after_mins: 60

3. 缓存设置策略

1 keyspaces:
2 - name: Twissandra
3
4 column_families:
5 - name: User
6 keys_cached: 100           ## 缓存的Key的数量
7 preload_row_cache: true  ##是否预载行缓存
8 rows_cached: 1000         ##行缓存的键的数量.
9

4. 磁盘访问策略.

1 # Choices are auto, standard, mmap, and
2 # mmap_index_only.
3 disk_access_mode: auto

访问模式.

  • mmapped i/o 速度非常快,但是仅仅在64位的机器(显然不包含EC2的”small”实例)或者数据集相对较小时可行.
  • auto“是比较安全的选择,将在64位的JVM上使用mmap模式.
  • 其他值有”mmap“与“mmap_index_only“(通过仅对索引文件使用mmap以使你部分享受到mmap的好处),”standard“(buffer 相关参数仅仅对standard以及non-mmaped i/o有效)

(buffer相关参数包含SlicedBufferSizeInKB,FlushDataBufferSizeInMB,FlushIndexBufferSizeInMB)
此段内容翻译自Cassandra Wiki Storage Configuration

5. 相关内容监控

01 bin/nodetool –host <ARG> command
02   
03 --Command List
04 ring
05 info
06 cfstats
07 tpstats
08 compact
09 snapshot [name]
10 flush
11 drain
12 repair
13 decommission
14 move
15 loadbalance
16 get_endpoints < keyspace > < key >
17 global_snapshot [name]
18 clear_global_snapshot
19 truncate < keyspace > < cfname >
<!-- / Post -->

扩展Facebook到5亿用户以及以上.

扩展Facebook到5亿用户以及以上
By Robert Johnson Translated By Jametong

今天对Facebook来讲,我们达到了Facebook的一个非常重要的里程碑-5亿的用户数.这对于我们这些从事技术与运维的工程师来讲尤其令人激动,是我们构建了有能力处理如此巨大规模的增长的系统.当我在4年前来到Facebook的时候,我们有700万用户(在当时看似已经是非常的数量了),这一路走来遇到的挑战远远超出我们的想像.

下面是我们处理的部分大数字(the Big Numbers):

  • 5个亿的活跃用户数
  • 每天1000亿的点击数
  • 500亿的图片数
  • 2万亿的缓存对象,每秒亿级的请求数
  • 每天130TB的日志量

这些年,我们在此页面写了部分关于我们如何处理这么大规模数据的技术方案.今天,我将退后一步,来谈谈一些我们关于扩展(Scaling)的常用方法,以及部分我们用来解决此类扩展性问题的原则.如在Facebook本身一样,这些原则既涉及到技术也涉及到人.实际上,下面将要讨论的原则只有部分是完全技术相关的.在这一天结束的时候,是这些构建此系统并使其运转的人,我们用来扩展这些系统的最佳工具是我们可以处理任何问题的技术与运营团队.我最感到自豪的扩展统计指标是我们的每个工程师可以服务100万的用户,并且这个指标还在稳定地增长.

纵向扩展

它不是万能的,不过,它确实很重要.如果什么东西出现了爆发性的增长,处理它的唯一明智可行的方法就是将其分布到任意多数量的机器上.切记,计算机世界只有三个数字:0,1和n.

例如,考虑这样一种情况,用户数据库无法处理此负载.我们可以将其拆分成两个功能-比如说,账户与概要—并将他们放到不同的数据库中.这可能耗费掉我们一整天的时间,不过,也可能需要花费更多的工作,而且它只能扩展到两倍的容量.一旦完成此项工作,我们还必须开始下一步新的工作,而且下一步的工作会更加困难.相反,我们可以花费部分额外的时间来编写代码,以解决当两个用户不在同一个数据库中的情况.这可能比将代码拆成两半要耗费更多的工作时间,不过它可以在后续的很长时间都给我们带来收益.

注意,这样做并不会提高效率,实际上,它可能让情况变得更糟糕.效率是非常重要的,但是,我们认为它与扩展性(Scaling)是相互独立的项目.

快速响应

如果你查看我们的增长曲线,你将发现不到它有平稳的时候.我们从来就没有坐下来深呼吸、自我恭维一番、并考虑下一步该如何做的时间.每周,我们都会遭遇更大的挑战.

当然,我们对此图的最终走向有不错的注意,但是,每个规模级别上都会有惊喜.我们可用来处理这些惊喜的最佳方式是,拥有可以灵活应对并快速解决问题的技术与运维团队.快速响应也使得我们可以尝试更多的事情,来检验哪个才是在实践中真正可用的.我们发现,保持这种灵活性要远远比任何其他技术决定来的重要.

渐进变更

我们发现,保持快速移动的最好方式是进行大量的小的变更,并衡量做了这些变更后系统的反应.这并不意味着我们不去做大事,它仅仅表示只要有可能,我们都将其拆分成大量的独立的小块.与此相反,很多开发哲学尝试做批量变更.

即使有些东西无法在功能上对其进行拆分,我们也尝试逐步地推出.这可能意味着一次迁移一部分用户或者一部分机器,甚或构建一个与老系统完全并行的系统,并在我们衡量效果的时候缓慢地将流量切换过来.

渐进变更的伟大之处在于,只要有东西与你期望的不一致,你立刻就能发现.与直觉不同,这样做最终让保持系统稳定变更更加容易.

当生产环境有问题时,修复它的最困难的部分可能就是问题定位了.如果只有一个变更的话,问题的定位就简单多了.在传统模型中,当你有几个星期甚至几个月的变更一起生效时,定位具体哪个变更导致了问题可能是个梦魇.

度量一切

只有当你确实有能力监控系统在做什么时,你才可以做大量的小的变更,并监控系统在做什么.在Facebook,我们收集巨量的数据,任一特定的服务器都会输出几十上百个可制作成图表的指标.这不仅仅包含类似于CPU与内存等系统级别的内容,还包含应用级别的统计信息,我们可以据此判断为什么发生这样的事情.

当他们有问题时(真正有趣的问事情只会出现在生产环境),统计信息来自真实的发生问题的生产环境机器这一点非常重要.这些统计必须来自所有的机器,因为大量重要的影响都被平均数隐藏了,只是出现在分布图上,特别是95%或99%的百分位上.

我们构建了多个用来收集、分析这些数据的工具,并已经将它们发布到了开源社区,其中包含HiveScribe.

小而独立的团队

当我开始在Facebook工作时,我是图片处理模块团队的两个人之一.这很疯狂,但是,现在我们已经是一个”大”公司了.我们图片处理模块有三个人.我们每个人都了解图片处理模块的所有底细,都可以独立地做相关决定.因此,当需要对图片处理模块做什么变更时,都可以快速而准确地做好此变更.



 

控制权与责任

如果没有开发与运营团队地无缝合作,以及他们如同事一个团队一样的去解决问题,上述原则都将无法实施.对于这一点,说易行难,但是,我们有一个非常有用的基本原则.

对一件事情负责的人必须对这件事有控制权.

这一点看似非常明显,但实际情况通常不是这样.经典的例子是一个人发布另一个人写的代码.发布代码的人好像对此负责,但实际上是写这个代码的对此有控制权.这就将发布此代码的人置于一个艰难的境地,他们仅有的选择是要么发布此代码,要么对冒险对可能出现的问题承担责任,因此,他们有强烈的动机拒绝发布.另一方面,如果写此代码的人感觉自己并不负责此功能是否有效,这个功能很可能就无法有效工作.

在Facebook,我们每天都会往网站发布代码,是写这些代码的人对此具体负责.看到自己创建的东西被5亿的人使用是令人振奋并震撼人心的.看到它出问题就更加震撼人心了. 关于如果给这5亿的用户带来伟大的软件,我们所知道的最好的方式是让对此事的重要性有深刻理解,对此事有深刻理解并有控制权的人来做正确的决定.

5亿之外

我们非常自豪,我们创建了一个5亿人想要使用的网站,这个5亿人正在使用的网站仍然在工作.但这确实仅仅是一个开始. 我们希望在不远的将来,我们会有另外5个亿的用户,这些原则将帮助我们克服后面将要面对的任何新的挑战.

Bobby, 技术总监, 比他4年前对大数字(Big Numbers)有了完全不同的理解.

<!-- / Post -->

为什么Quora不使用NoSQL来做数据存储

本文算是对目前NoSQL的一篇比较不错的反思文章,不完全代表我个人的想法.

Quora是一家做互动问答的网站, 他们最近在自己的网站上提出了一个问题,即标题所示: 为什么Quora不使用NoSQL来做数据存储?

链接如下: http://www.quora.com/Why-does-Quora-use-MySQL-as-the-data-store-rather-than-NoSQLs-such-as-Cassandra-MongoDB-CouchDB-etc

我这边简要的翻译并总结以下:

from Adam D’Angelo, MySQL user since 2004

  • 1. 如果你在应用级别做数据分区,MySQL的伸缩性已经可以基本满足需要. Facebook在2008年的时候,他们的2个DBA差不多维护着1800个MySQL的服务器. 在这种情况下, 分区之间是不能做连接操作的, 不过NoSQL数据库也不允许这样做. Facebook并没有确认使用Cassandra来作为任何数据的主存储,看似收件箱是他们目前仅有的使用Cassandra的应用.

     

  • 2. 这些分布式数据库(例如Cassandra,MongoDB以及CouchDB)实际上扩展性与稳定性都没有那么好. Twitter显然在一年前就想从MySQL迁移到Cassandra了(他们目前已经调整策略了), 如果有人在一年前宣布使用超过1000台机器的集群来使用这些系统,我将重新考虑我的观点.

     

  • 3. 使用一种新技术来部署应用的主在线数据存储是非常冒风险的决定. 如果你丢失的你的数据库或者遇到了数据损坏, 这将是个灾难,这些数据可能永远也无法恢复回来, 如果你们是少数几个在生产环境大规模使用它的公司, 你将不得不祈求开发的怜悯,期待他们来修复bug或者解决伸缩性问题.

     

  • 4. 实际上,哪怕是在单台MySQL服务器上,你也可以走的很远,而不用考虑在应用层做拆分的问题. 你可以使用”向上扩展”的方式给一台机器配备大量的CPU以及大量的内存,并配备一个副本. 如果你可以在数据库之上再配置一个MemCached服务层的化(这是很容易向外扩展的),这时数据库就只需要考虑写操作了.你还可以使用S3(Simple Storage Service of Amazon)或者其他类似的分布式散列表来将数据库中的大对象字段移出来. 你并不需要考虑系统在10倍压力之后将如何伸缩,只要你有信心随着容量的增长,你知道如何对系统进行扩展就可以了.

     

  • 5. 手工在大量MySQL机器进行数据分区的很多问题都可以通过下面的方法来缓解,在应用层之下以及MySQL之上构建一个数据层,来对数据做自动分布. FriendFeed 描述了一个这种实现方式的很好的范例.

     

  • 6. 就我个人来讲,我相信关系数据模型是构建大部分应用(如Quora,以及大部分用户生产内容的网站)数据的”正确”的方式. 表结构的存在,使得数据可以在应用的多个版本之间保持一定的稳定性,他们可以部分地充当文档,并预防大量的bug. SQL语句使得你可以在必要的时候将计算推到数据这一块,而不是将大量的数据拉到应用端再来做处理. 我觉得,当某人最终用一种弱化的语义实现了分布式关系数据库的时候,”NoSQL”的风尚也就结束了.
<!-- / Post -->
  • 大小: 52.9 KB
分享到:
评论

相关推荐

    sblim-gather-provider-2.2.8-9.el7.x64-86.rpm.tar.gz

    1、文件内容:sblim-gather-provider-2.2.8-9.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/sblim-gather-provider-2.2.8-9.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊

    基于pringboot框架的图书进销存管理系统的设计与实现(Java项目编程实战+完整源码+毕设文档+sql文件+学习练手好项目).zip

    本图书进销存管理系统管理员功能有个人中心,用户管理,图书类型管理,进货订单管理,商品退货管理,批销订单管理,图书信息管理,客户信息管理,供应商管理,库存分析管理,收入金额管理,应收金额管理,我的收藏管理。 用户功能有个人中心,图书类型管理,进货订单管理,商品退货管理,批销订单管理,图书信息管理,客户信息管理,供应商管理,库存分析管理,收入金额管理,应收金额管理。因而具有一定的实用性。 本站是一个B/S模式系统,采用Spring Boot框架,MYSQL数据库设计开发,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得图书进销存管理系统管理工作系统化、规范化。本系统的使用使管理人员从繁重的工作中解脱出来,实现无纸化办公,能够有效的提高图书进销存管理系统管理效率。 关键词:图书进销存管理系统;Spring Boot框架;MYSQL数据库

    2024中国在人工智能领域的创新能力如何研究报告.pdf

    2024中国在人工智能领域的创新能力如何研究报告.pdf

    安全生产_人脸识别_移动目标跟踪_智能管控平台技术实现与应用_1741777778.zip

    人脸识别项目实战

    人脸识别_TF2_Facenet_训练预测应用仓库_1741778670.zip

    人脸识别项目实战

    安全人脸识别_对抗攻击_多模型集成_减少扰动_竞赛方案_Ne_1741779504.zip

    人脸识别项目实战

    Python实现基于CEEMDAN完全自适应噪声集合经验模态分解时间序列信号分解的详细项目实例(含完整的程序,GUI设计和代码详解)

    内容概要:本文档详细介绍了基于CEEMDAN(完全自适应噪声集合经验模态分解)的方法实现时间序列信号分解的具体项目。文中涵盖项目背景介绍、主要目标、面临的挑战及解决方案、技术创新点、应用领域等多方面内容。项目通过多阶段流程(数据准备、模型设计与构建、性能评估、UI设计),并融入多项关键技术手段(自适应噪声引入、并行计算、机器学习优化等)以提高非线性非平稳信号的分析质量。同时,该文档包含详细的模型架构描述和丰富的代码样例(Python代码),有助于开发者直接参考与复用。 适合人群:具有时间序列分析基础的科研工作者、高校教师与研究生,从事信号处理工作的工程技术人员,或致力于数据科学研究的从业人员。 使用场景及目标:此项目可供那些面临时间序列数据中噪声问题的人群使用,尤其适用于需从含有随机噪音的真实世界信号里提取有意义成分的研究者。具体场景包括但不限于金融市场趋势预测、设备故障预警、医疗健康监控以及环境质量变动跟踪等,旨在提供一种高效的信号分离和分析工具,辅助专业人士进行精准判断和支持决策。 其他说明:本文档不仅限于理论讲解和技术演示,更着眼于实际工程项目落地应用,强调软硬件资源配置、系统稳定性测试等方面的细节考量。通过完善的代码实现说明以及GUI界面设计指南,使读者能够全面理解整个项目的开发流程,同时也鼓励后续研究者基于已有成果继续创新拓展,探索更多的改进空间与发展机遇。此外,针对未来可能遇到的各种情况,提出了诸如模型自我调整、多模态数据融合等发展方向,为长期发展提供了思路指导。

    监护人,小孩和玩具数据集 4647张原始图片 监护人 食物 孩子 玩具 精确率可达85.4% pasical voc xml格式

    监护人,小孩和玩具数据集 4647张原始图片 监护人 食物 孩子 玩具 精确率可达85.4% pasical voc xml格式

    根据提供的内容可以构建以下_1741777949.zip

    人脸识别项目实战

    `计算机视觉_人脸识别_Python_OpenCV_树莓派毕业设计`.zip

    人脸识别项目实战

    智慧生产企业园区解决方案PPT(54页).pptx

    在智慧园区建设的浪潮中,一个集高效、安全、便捷于一体的综合解决方案正逐步成为现代园区管理的标配。这一方案旨在解决传统园区面临的智能化水平低、信息孤岛、管理手段落后等痛点,通过信息化平台与智能硬件的深度融合,为园区带来前所未有的变革。 首先,智慧园区综合解决方案以提升园区整体智能化水平为核心,打破了信息孤岛现象。通过构建统一的智能运营中心(IOC),采用1+N模式,即一个智能运营中心集成多个应用系统,实现了园区内各系统的互联互通与数据共享。IOC运营中心如同园区的“智慧大脑”,利用大数据可视化技术,将园区安防、机电设备运行、车辆通行、人员流动、能源能耗等关键信息实时呈现在拼接巨屏上,管理者可直观掌握园区运行状态,实现科学决策。这种“万物互联”的能力不仅消除了系统间的壁垒,还大幅提升了管理效率,让园区管理更加精细化、智能化。 更令人兴奋的是,该方案融入了诸多前沿科技,让智慧园区充满了未来感。例如,利用AI视频分析技术,智慧园区实现了对人脸、车辆、行为的智能识别与追踪,不仅极大提升了安防水平,还能为园区提供精准的人流分析、车辆管理等增值服务。同时,无人机巡查、巡逻机器人等智能设备的加入,让园区安全无死角,管理更轻松。特别是巡逻机器人,不仅能进行360度地面全天候巡检,还能自主绕障、充电,甚至具备火灾预警、空气质量检测等环境感知能力,成为了园区管理的得力助手。此外,通过构建高精度数字孪生系统,将园区现实场景与数字世界完美融合,管理者可借助VR/AR技术进行远程巡检、设备维护等操作,仿佛置身于一个虚拟与现实交织的智慧世界。 最值得关注的是,智慧园区综合解决方案还带来了显著的经济与社会效益。通过优化园区管理流程,实现降本增效。例如,智能库存管理、及时响应采购需求等举措,大幅减少了库存积压与浪费;而设备自动化与远程监控则降低了维修与人力成本。同时,借助大数据分析技术,园区可精准把握产业趋势,优化招商策略,提高入驻企业满意度与营收水平。此外,智慧园区的低碳节能设计,通过能源分析与精细化管理,实现了能耗的显著降低,为园区可持续发展奠定了坚实基础。总之,这一综合解决方案不仅让园区管理变得更加智慧、高效,更为入驻企业与员工带来了更加舒适、便捷的工作与生活环境,是未来园区建设的必然趋势。

    第八届全国大学生创新创业年会-创新创业展示项目集

    本届年会的主题是“青春梦想创新创业”。通过学术论文报告、创新创业项目展示、创业项目推介、工作研讨、联谊活动、大会报告等活动,全面展示大学生最新的创新创业成果。年会共收到491所高校推荐的学术论文756篇、创新创业展示项目721项、创业推介项目156项,合计1633项,为历届年会数量最高。经过36所“985”高校相关学科专家的初评以及国家级大学生创新创业训练计划专家组的复选,最终遴选出可参加本次年会的学术论文180篇,创新创业展示项目150个,创业推介项目45项,共计375项,涉及30个省市的236所高校。年会还收到了来自澳门特别行政区、俄罗斯的13项学术论文及参展项目。这些材料集中反映了各高校最新的创新创业教育成果,也直接体现了当代大学生的创新思维和实践能力。

    人脸识别_实时_ArcFace_多路识别技术_JavaScr_1741771263.zip

    人脸识别项目实战

    6ES7215-1AG40-0XB0-V04.04.01固件4.5

    6ES7215-1AG40-0XB0_V04.04.01固件4.5

    在无人机上部署SchurVins的yaml配置文件

    在无人机上部署SchurVins的yaml配置文件

    uniapp实战商城类app和小程序源码​​​​​​.rar

    uniapp实战商城类app和小程序源码,包含后端API源码和交互完整源码。

    基于MobileNet轻量级网络实现的常见30多种食物分类

    基于MobileNet轻量级网络实现的常见30多种食物分类,包含数据集、训练脚本、验证脚本、推理脚本等等。 数据集总共20k左右,推理的形式是本地的网页推理

    2024年央国企RPA市场研究报.pdf

    2024年央国企RPA市场研究报.pdf

    VSCodeSetup-x64-1.98.0.rar

    VSCodeSetup-x64-1.98.0.rar vscode是一种简化且高效的代码编辑器,同时支持诸如调试,任务执行和版本管理之类的开发操作。它的目标是提供一种快速的编码编译调试工具。然后将其余部分留给IDE。vscode集成了所有一款现代编辑器所应该具备的特性,包括语法高亮、可定制的热键绑定、括号匹配、以及代码片段收集等。 Visual Studio Code(简称VSCode)是Microsoft开发的代码编辑器,它支持Windows,Linux和macOS等操作系统以及开源代码。它支持测试,并具有内置的Git版本控制功能以及开发环境功能,例如代码完成(类似于IntelliSense),代码段和代码重构等。编辑器支持用户定制的配置,例如仍在编辑器中时,可以更改各种属性和参数,例如主题颜色,键盘快捷键等,内置的扩展程序管理功能。

    日用品玻璃行业数字化转型:生产管理痛点与工业互联网平台解决方案

    内容概要:本文介绍了日用品玻璃行业的数字化解决方案,针对玻璃制品从原料制备、熔融到成型及深加工等一系列生产过程进行了详细的梳理。文中指出玻璃日用品制造业面临设备不停止运转造成的成本居高不下、频繁的小批量多款式订单切换带来的转产效率低下、以及在成型阶段的质量控制难度较大等严峻的问题,即'一高两低'的问题,并提出构建工业互联网平台,通过采用工业大数据平台等手段来克服现有挑战,达成生产全流程的数据贯通与优化。 适用人群:日用品玻璃企业的高级管理层和技术团队,负责生产流程改进、IT基础设施建设以及智能制造转型的专业人士。 使用场景及目标:该方案旨在帮助企业提升生产效率,增强产品品质,降低成本;具体应用场景涵盖生产设备状态的实时监测、故障预警、预防性维护、生产过程自动化调节等,进而实现企业数字化转型,提高市场响应速度和服务质量。 其他说明:本文提到的具体技术和方法包括物联网(IoT)技术、边缘计算、云计算平台建设和利用,还有通过机器学习和大数据分析技术对生产工艺进行深度理解和优化等。

Global site tag (gtag.js) - Google Analytics