`

PythonCookbook——数据结构和算法

阅读更多

PythonCookbook学习笔记

 

第一章    数据结构和算法

 

1.1    将序列分解为单独的变量

p = (4, 5)
x, y = p
print x 
print y 

data = [ 'ACME', 50, 91.1, (2012, 12, 21) ]
name, shares, price, date = data
print name
print shares 
print price 
print date 
name, shares, price, (year, mon, day ) = data
print year 

p = (4, 5)
#x, y, z = p 错误!!!

s = 'hello!'
a, b, c, d, e, f = s
print a
print f

data = [ 'ACME', 50, 91.1, (2012, 12, 21) ]
_, shares, price, _ = data 
print shares
print price
#其他数据可以丢弃了

 1.2    从任意长度的可迭代对象中分解元素

from audioop import avg

def drop_first_last(grades):
    first, *middle, last = grades
    return avg(middle)

record = ('Dave', 'dave@example.com', '777-333-2323', '234-234-2345')
name, email, *phone_numbers = record
print name 
print email
print phone_numbers

*trailing, current = [10, 8, 7, 2, 5]
print trailing  #[10, 8, 7, 2, ]
print current #5

records = [
           ('foo', 1, 2),
           ('bar', 'hello'),
           ('foo', 5, 3)
           ]
def do_foo(x, y):
    print ('foo', x, y)
def do_bar(s):
    print ('bar', s)
for tag, *args in records:
    if tag == 'foo':
        do_foo(*args)
    elif tag == 'bar':
        do_bar(*args)
        
line = 'asdf:fedfr234://wef:678d:asdf'
uname, *fields, homedir, sh = line.split(':')
print uname 
print homedir

record = ('ACME', 50, 123.45, (12, 18, 2012))
name, *_, (*_, year) = record
print name
print year

items = [1, 10, 7, 4, 5, 9]
head, *tail = items
print head #1
print tail #[10, 7, 4, 5, 9]

def sum(items):
    head, *tail = items
    return head + sum(tail) if tail else head
sum(items)

 1.3    保存最后N个元素

from _collections import deque

def search(lines, pattern, history=5):
    previous_lines = deque(maxlen = history)
    for line in lines:
        if pattern in line:
            yield line, previous_lines
        previous_lines.append(line)
# Example use on a file
if __name__ == '__main__':
    with open('somefile.txt') as f:
        for line, prevlines in search(f, 'python', 5):
            for pline in prevlines:
                print (pline) #print (pline, end='')
            print (line) #print (pline, end='')
            print ('-'*20)
            
q = deque(maxlen=3)
q.append(1)
q.append(2)
q.append(3)
print q
q.append(4)
print q

q = deque()
q.append(1)
q.append(2)
q.append(3)
print q
q.appendleft(4)
print q
q_pop = q.pop()
print q_pop
print q
q_popleft = q.popleft()
print q_popleft
print q

 1.4    找到最大或最小的N个元素

import heapq

nums = [1,30,6,2,36,33,46,3,23,43]
print (heapq.nlargest(3, nums))
print (heapq.nsmallest(3, nums))

portfolio = [
                 {'name':'IBM', 'shares':100, 'price':2.4},
                 {'name':'A', 'shares':1040, 'price':12.4},
                 {'name':'S', 'shares':40, 'price':23.4},
                 {'name':'D', 'shares':1, 'price':2.49},
                 {'name':'F', 'shares':9, 'price':24}
             ]
cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])
print cheap
print expensive

nums = [1,8,2,23,7,-4,18,23,42,37,2]
heap = list(nums)
print heap
heapq.heapify(heap)
print heap
print heapq.heappop(heap)
print heapq.heappop(heap)
print heapq.heappop(heap)

 1.5    实现优先级队列

import heapq

class PriorityQueue:
    def __init__(self):
        self._queue = []
        self._index = 0
    def push(self, item, priority):
        heapq.heappush(self._queue, (-priority, self._index, item))
        self._index += 1
    def pop(self):
        return heapq.heappop(self._queue)[-1]
#Example
class Item:
    def __init__(self, name):
        self.name = name
    def __repr__(self):
        return 'Item({!r})'.format(self.name)
q = PriorityQueue()
q.push(Item('foo'), 1)
q.push(Item('spam'), 4)
q.push(Item('bar'), 5)
q.push(Item('grok'), 1)
print q.pop()
print q.pop()
print q.pop()

a = Item('foo')
b = Item('bar')
#a < b    error

a = (1, Item('foo'))
b = (5, Item('bar'))
print a < b

c = (1, Item('grok'))
#a < c  error

a = (1, 0, Item('foo'))
b = (5, 1, Item('bar'))
c = (1, 2, Item('grok'))
print a < b
print a < c

 1.6    在字典中将建映射到多个值上

d = {
        'a' : [1, 2, 3],
        'b' : [4, 5]
     }
e = {
        'a' : {1, 2, 3},
        'b' : {4, 5}
     }

from collections import defaultdict

d = defaultdict(list)
d['a'].append(1)
d['a'].append(2)
d['a'].append(3)
print d

d = defaultdict(set)
d['a'].add(1)
d['a'].add(2)
d['a'].add(3)
print d

d = {}
d.setdefault('a', []).append(1)
d.setdefault('a', []).append(2)
d.setdefault('b', []).append(3)
print d 

d = {}
for key, value in d:#pairs:
    if key not in d:
        d[key] = []
    d[key].append(value)

d = defaultdict(list)
for key, value in d:#pairs:
    d[key].append(value)

 1.7    让字典保持有序

from collections import OrderedDict

d = OrderedDict()
d['foo'] = 1
d['bar'] = 2
d['spam'] = 3
d['grol'] = 4
for key in d:
    print (key, d[key])
    
import json

json.dumps(d)

 1.8    与字典有关的计算问题

price = {
            'ACME':23.45,
            'IBM':25.45,
            'FB':13.45,
            'IO':4.45,
            'JAVA':45.45,
            'AV':38.38,
         }

min_price = min( zip( price.values(), price.keys() ) )
print min_price

max_price = max( zip( price.values(), price.keys() ) )
print max_price

price_sorted = sorted( zip( price.values(), price.keys() ) )
print price_sorted   

price_and_names = zip( price.values(), price.keys() )
print (min(price_and_names))
#print (max(price_and_names))  error  zip()创建了迭代器,内容只能被消费一次

print min(price)
print max(price)

print min(price.values())
print max(price.values())


print min(price, key = lambda k : price[k])
print max(price, key = lambda k : price[k])

min_value = price[ min(price, key = lambda k : price[k]) ]
print min_value

price = {
            'AAA': 23,
            'ZZZ': 23,
         }
print min( zip( price.values(), price.keys() ) )
print max( zip( price.values(), price.keys() ) )

 1.9    在两个字典中寻找相同点

a = {
        'x':1,
        'y':2,
        'z':3
     }
b = {
        'x':11,
        'y':2,
        'w':10
     }

print a.keys() & b.keys() #{'x','y'}
print a.keys() - b.keys() #{'z'}
print a.items() & b.items() #{('y', 2)}

c = {key: a[key] for key in a.keys() - {'z', 'w'} }
print c #{'x':1, 'y':2}

 1.10    从序列中移除重复项且保持元素间顺序不变

def dedupe(items):
    seen = set()
    for item in items:
        if item not in seen:
            yield item
            seen.add(item)
#example
a = [1,5,2,1,9,1,5,10]
print list(dedupe(a))

def dedupe2(items, key = None):
    seen = set()
    for item in items:
        val = item if key is None else key(item)
        if val not in seen:
            yield item
            seen.add(val) 
#example
a = [ 
        {'x':1, 'y':2}, 
        {'x':1, 'y':3}, 
        {'x':1, 'y':2}, 
        {'x':2, 'y':4}, 
     ]
print list( dedupe2(a, key=lambda d : (d['x'], d['y']) ) )
print list( dedupe2(a, key=lambda d : (d['x']) ) )

a = [1,5,2,1,9,1,5,10]
print set(a)   

 1.11    对切片命名

items = [0,1,2,3,4,5,6]
a = slice(2,4)
print items[2:4]
print items[a]
items[a] = [10,11]
print items

print a.start
print a.stop
print a.step

 1.12    找出序列中出现次数最多的元素

words = [
            'look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes',
            'the', 'look'
         ]

from collections import Counter

word_counts = Counter(words)
top_three = word_counts.most_common(3)
print top_three

print word_counts['look']
print word_counts['the']

morewords = ['why', 'are', 'you', 'not', 'looking', 'in', 'my', 'eyes']
for word in morewords:
    word_counts[word] += 1
print word_counts['eyes']
print word_counts['why']

word_counts.update(morewords)
print word_counts['eyes']
print word_counts['why']

a = Counter(words)
b = Counter(morewords)
print a
print b
c = a + b
print c
d = a - b
print b

 1.13    通过公共键对字典列表排序

rows = [
            {'fname':'Brian', 'lname':'Jones', 'uid':1003},
            {'fname':'David', 'lname':'Beazley', 'uid':1002},
            {'fname':'John', 'lname':'Cleese', 'uid':1001},
            {'fname':'Big', 'lname':'Jones', 'uid':1004}
        ]

from operator import itemgetter

rows_by_fname = sorted(rows, key=itemgetter('fname'))
rows_by_uid = sorted(rows, key=itemgetter('uid'))
print rows_by_fname
print rows_by_uid
rows_by_lfname = sorted(rows, key=itemgetter('lname', 'fname'))
print rows_by_lfname

rows_by_fname = sorted(rows, key=lambda r: r['fname'])
rows_by_lfname = sorted(rows, key=lambda r: (r['fname'], r['lname']))
print rows_by_fname
print rows_by_lfname

print min(rows, key=itemgetter('uid'))
print max(rows, key=itemgetter('uid'))

 1.14    对不原生支持比较操作的对象排序

class User:
    def __init__(self, user_id):
        self.user_id = user_id
    def __repr__(self):
        return 'User({})'.format(self.user_id)

users = [User(23), User(3), User(99)]
print users
print sorted(users, key = lambda u: u.user_id)

from operator import attrgetter
print sorted(users, key=attrgetter('user_id'))

print min(users, key=attrgetter('user_id'))
print max(users, key=attrgetter('user_id'))

 1.15    根据字段将记录分组

rows = [
            {'address':'5412 N CLARK', 'data':'07/01/2012'},
            {'address':'5232 N CLARK', 'data':'07/04/2012'},
            {'address':'5542 E 58ARK', 'data':'07/02/2012'},
            {'address':'5152 N CLARK', 'data':'07/03/2012'},
            {'address':'7412 N CLARK', 'data':'07/02/2012'},
            {'address':'6789 w CLARK', 'data':'07/03/2012'},
            {'address':'9008 N CLARK', 'data':'07/01/2012'},
            {'address':'2227 W CLARK', 'data':'07/04/2012'}
        ]

from operator import itemgetter
from itertools import groupby

rows.sort(key=itemgetter('data'))
for data, items in groupby(rows, key=itemgetter('data')):
    print (data)
    for i in items:
        print (' ', i)
        
from collections import defaultdict
rows_by_date = defaultdict(list)
for row in rows:
    rows_by_date[row['data']].append(row)
for r in rows_by_date['07/04/2012']:
    print(r)

 1.16    筛选序列中的元素

mylist = [1,4,-5,10,-7,2,3,-1]
print [n for n in mylist if n > 0]#列表推导式
print [n for n in mylist if n < 0]

pos = (n for n in mylist if n > 0)#生成器表达式
print pos
for x in pos:
    print(x)

values = ['1', '2', '-3', '-', '4', 'N/A', '5']
def is_int(val):
    try:
        x = int(val)
        return True
    except ValueError:
        return False
ivals = list(filter(is_int, values))
print(ivals)

mylist = [1,4,-5,10,-7,2,3,-1]
import math
print [math.sqrt(n) for n in mylist if n > 0]

clip_neg = [n if n > 0 else 0 for n in mylist]
print clip_neg

clip_pos = [n if n < 0 else 0 for n in mylist]
print clip_pos

addresses = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
counts = [0, 3, 10, 4, 1, 7, 6, 1]
from itertools import compress
more5 = [n > 5 for n in counts]
print more5
print list(compress(addresses, more5))

 1.17    从字典中提取子集

prices = {'ACNE':45.23, 'AAPL':612.78, 'IBM':205.55, 'HPQ':37.20, 'FB':10.75}
p1 = { key:value for key, value in prices.items() if value > 200 }
print p1

tech_names = {'AAPL', 'IBM', 'HPQ'}
p2 = { key:value for key, value in prices.items() if key in tech_names }
print p2

p3 = dict( (key, value) for key, value in prices.items() if value > 200 ) #慢
print p3

tech_names = {'AAPL', 'IBM', 'HPQ'}
p4 = { key:prices[key] for key in prices.keys() if key in tech_names } #慢
print p4

 1.18    将名称映射到序列的元素中

from collections import namedtuple

Subscriber = namedtuple('Subscriber', ['addr', 'joined'])
sub = Subscriber('wang@qq.com', '2020-10-10')
print sub
print sub.joined
print sub.addr

print len(sub)
addr, joined = sub
print addr
print joined

def compute_cost(records):
    total = 0.0
    for rec in records:
        total += rec[1]*rec[2]
    return total

Stock = namedtuple('Stock', ['name', 'shares', 'price'])
def compute_cost2(records):
    total = 0.0
    for rec in records:
        s = Stock(*rec)
        total += s.shares * s.price
    return total

s = Stock('ACME', 100, 123.45)
print s
#s.shares = 75    #error
s = s._replace(shares=75)
print s

Stock = namedtuple('Stock', ['name', 'shares', 'price', 'date', 'time'])
stock_prototype = Stock('',0, 0.0, None, None)
def dict_to_stock(s):
    return stock_prototype._replace(**s)
a = {'name':'ACME', 'shares':100, 'price':123.45}
print dict_to_stock(a)
b = {'name':'ACME', 'shares':100, 'price':123.45, 'date':'12/12/2012'}
print dict_to_stock(b)

 1.19    同时对数据做转换和换算

nums = [1, 2, 3, 4, 5]
s = sum( x*x for x in nums )
print s

import os
files = os.listdir('dirname')
if any(name.endswith('.py') for name in files):
    print('There be Python!')
else:
    print('sorry, no Python!')
    
s = ('ACME', 50, 123.45)
print(','.join(str(x) for x in s))

portfolio = [
                {'name':'GOOG', 'shares':50},
                {'name':'YHOO', 'shares':75},
                {'name':'AOL', 'shares':20},
                {'name':'SCOX', 'shares':65}
             ]
min_shares = min(s['shares'] for s in portfolio)
print min_shares    

min_shares = min(portfolio, key=lambda s: s['shares'])
print min_shares

 1.20    将多个映射合并为单个映射

a = {'x':1, 'z':3}
b = {'y':2, 'z':4}

#from collections import ChainMap
from pip._vendor.distlib.compat import ChainMap

c = ChainMap(a, b)
print(c['x'])
print(c['y'])
print(c['z']) #from a    第一个映射中的值

print len(c)
print list(c.values())

c['z'] = 10
c['w'] = 40
del c['x']
print a
#del c['y']    #error    修改映射的操作总是会作用在列表的第一个映射结构上

values = ChainMap()
values['x'] = 1
values = values.new_child()#add a new map
values['x'] = 2
values = values.new_child()
values['x'] = 3
#print values
print values['x']
values = values.parents
print values['x']
values = values.parents
print values['x']

a = {'x':1, 'z':3}
b = {'y':2, 'z':4}
merged = dict(b)
merged.update(a)
print merged['x']
print merged['y']
print merged['z']
a['x'] = 13
print merged['x']   #不会反应到合并后的字典中

a = {'x':1, 'z':3}
b = {'y':2, 'z':4}
merged = ChainMap(a, b)
print merged['x']
a['x'] = 42
print merged['x']   #会反应到合并后的字典中

 

1
2
分享到:
评论

相关推荐

    编程的灵魂——数据结构+算法=程序

    编程的灵魂——数据结构+算法=程序编程的灵魂——数据结构+算法=程序编程的灵魂——数据结构+算法=程序编程的灵魂——数据结构+算法=程序

    python数据结构与算法

    python数据结构与算法python数据结构与算法python数据结构与算法python数据结构与算法python数据结构与算法python数据结构与算法python数据结构与算法python数据结构与算法python数据结构与算法python数据结构与算法...

    .1_编程的灵魂——数据结构+算法=程序.ppt.1_编程的灵魂——数据结构+算法=程序.ppt

    总而言之,数据结构和算法是编程中不可或缺的两大部分,它们不仅决定了程序的效率和实用性,而且对于程序员而言,深入理解和掌握这两者,是编写优秀代码、解决复杂问题,以及在激烈竞争的IT行业中脱颖而出的关键。...

    《C++语言描述——数据结构算法与应用》

    《C++语言描述——数据结构算法与应用》是一本深入探讨C++编程语言在数据结构和算法应用方面的专业书籍。本书旨在帮助读者理解和掌握如何利用C++高效地实现各种数据结构和算法,从而提升编程技能和解决问题的能力。...

    Python数据结构与算法分析.docx

    在 Python 中实现数据结构和算法具有以下优点:Python 具有简单易学的语法和丰富的库,使得实现数据结构和算法变得简单和容易。Python 支持多种数据结构,如列表、元组、集合、字典和树等,使得我们可以更加灵活地...

    计算机科学与工程领域——数据结构与算法的专著 C/C++数据结构算法

    本书在简要回顾了基本的C++程序设计概念的基础上,全面系统地介绍了队列、堆栈、树、图等基本数据结构,以及贪婪算法、分而治之算法、分枝定界算法等多种算法设计方法,为数据结构与算法的继续学习和研究奠定了一个...

    软件技术基础课件4——数据结构与算法.ppt

    软件技术基础课件4——数据结构与算法.ppt

    数据结构与算法 Python语言描述 ——裘宗燕版

    《数据结构与算法 Python语言描述》是裘宗燕编著的一本专著,它深入浅出地介绍了数据结构和算法的基础知识,特别是如何利用Python语言进行实现。这本书以高清且带有目录的形式,使得读者能够方便地查找和学习相关...

    Python数据结构与算法分析(第2版)1

    【Python数据结构与算法分析(第2版)】是一本专为Python程序员设计的书籍,旨在帮助读者深入了解数据结构和算法在Python环境中的应用。作者布拉德利·米勒和戴维·拉努姆以其丰富的实战经验,清晰地阐述了如何高效...

    《C++语言描述——数据结构算法与应用》高清版

    对于有志于深入学习C++和数据结构算法的读者而言,《C++语言描述——数据结构算法与应用》无疑是一本不可多得的学习资料。无论你是计算机科学的初学者,还是有一定经验的软件开发人员,本书都能提供宝贵的知识和实践...

    数据结构和算法python英文原版

    该书作为“Undergraduate Topics in Computer Science”系列的一部分,旨在为计算机科学及相关领域的学生提供全面的数据结构和算法基础知识,并通过Python语言进行实现。 #### 二、作者简介 - **Kent D. Lee**:...

    数据结构与算法 Python语言描述-裘宗燕

    《数据结构与算法 Python语言描述》是裘宗燕教授撰写的一本专著,主要面向希望深入理解数据结构和算法,并且希望通过Python语言实现这些概念的读者。这本书是北京大学的教学资源,因其深入浅出的讲解方式而备受推崇...

    python数据结构与算法-已转档.pdf

    标题中的“Python数据结构与算法”指向了文档内容的核心主题,即通过Python语言来探索和实现数据结构与算法的相关知识。这部分内容主要涵盖Python编程语言中数据结构的实现方式、算法的设计技巧以及递归等编程概念的...

    CC++后端开发精进基石——数据结构与算法(红黑树、BB+树,Hash,Boom

    CC++后端开发精进基石——数据结构与算法(红黑树、BB+树,Hash,BoomFilter,b_Server-Development-Basics

    数据结构、算法与应用——C++语言描述.rar

    《数据结构、算法与应用——C++语言描述》是一本深入探讨计算机科学核心领域的经典教材。数据结构和算法是编程的基础,它们对于理解和优化程序性能至关重要。本书通过C++语言来阐述这些概念,使得读者能够更好地掌握...

    Data Structure and Algorithm Learning —— 数据结构与算法学习笔记.zip

    数据结构是计算机存储、组织数据的方式,它涉及到数据的逻辑结构、物理结构以及对数据的基本操作。...通过对数据结构的理解和运用,以及对算法的学习和研究,可以帮助我们更有效地解决实际问题,提升编程能力。

    数据结构与算法(python).pdf

    ### 数据结构与算法(Python) #### 核心知识点解析 ##### 一、算法效率与时间复杂度 **算法效率**是指算法完成特定任务所需资源(如时间或空间)的多少。在评估算法效率时,一个重要的概念是**时间复杂度**,它...

    Python-数据结构与算法leetcodelintcode题解

    在"Python-数据结构与算法leetcodelintcode题解"这个资源中,我们可以期待深入学习关于数据结构和算法的知识,这通常包括一系列的练习题解,这些题目来自两个知名的在线编程挑战平台:LeetCode和LintCode。...

Global site tag (gtag.js) - Google Analytics