`
heipark
  • 浏览: 2100165 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

股票财经API笔记

 
阅读更多

一、获取Yahoo数据 

1.1 实时数据

深圳交易所

http://finance.yahoo.com/d/quotes.csv?s=000625.sz&f=snohgl1v

000625.SZ CHANGAN AUTOMOBIL 12.4 12.8 12.4 12.69 9787354

 

上证交易所(API异常,目前无法获取数据):

http://finance.yahoo.com/d/quotes.csv?s=600600.SS&f=snohgl1v returns

600600.SS 600600.SS N/A N/A N/A 0 N/A

 

1.2 历史数据

下面两个只是域名不同,直接ping测试,指向相同IP

 

 

===下面为转载==================

1.获取实时数据

http://finance.yahoo.com/d/quotes.csv?s=股票名称&f=数据列选项

s — 表示股票名称,多个股票之间使用英文加号分隔,如“XOM+BBDb.TO+JNJ+MSFT”,罗列了四个公司的股票:XOM, BBDb.TO, JNJ, MSFT

f — 表示返回数据列,如“snd1l1yr”。更详细的参见附录

2.历史数据请求

http://ichart.yahoo.com/table.csv?s=string&a=int&b=int&c=int&d=int&e=int&f=int&g=d&ignore=.csv

s — 股票名称

a — 起始时间,月

b — 起始时间,日

c — 起始时间,年

d — 结束时间,月

e — 结束时间,日

f — 结束时间,年

g — 时间周期。

Ø  参数g的取值范围:d->‘’(day), w->‘’(week)m->‘’(mouth)v->‘dividends only’

Ø  月份是从0开始的,如9月数据,则写为08

示例

查询浦发银行2010.09.25 – 2010.10.8之间日线数据

http://ichart.yahoo.com/table.csv?s=600000.SS&a=08&b=25&c=2010&d=09&e=8&f=2010&g=d

查看国内沪深股市的股票,规则是:沪股代码末尾加.ss,深股代码末尾加.sz。如浦发银行的代号是:600000.SS

附录

雅虎股票API f参数对照表

a

Ask

a2

Average Daily Volume

a5

Ask Size

b

Bid

b2

Ask (Real-time)

b3

Bid (Real-time)

b4

Book Value

b6

Bid Size

c

Change & Percent Change

c1

Change

c3

Commission

c6

Change (Real-time)

c8

After Hours Change (Real-time)

d

Dividend/Share

d1

Last Trade Date

d2

Trade Date

e

Earnings/Share

e1

Error Indication (returned for symbol changed / invalid)

e7

EPS Estimate Current Year

e8

EPS Estimate Next Year

e9

EPS Estimate Next Quarter

f6

Float Shares

g

Day’s Low

h

Day’s High

j

52-week Low

k

52-week High

g1

Holdings Gain Percent

g3

Annualized Gain

g4

Holdings Gain

g5

Holdings Gain Percent (Real-time)

g6

Holdings Gain (Real-time)

i

More Info

i5

Order Book (Real-time)

j1

Market Capitalization

j3

Market Cap (Real-time)

j4

EBITDA

j5

Change From 52-week Low

j6

Percent Change From 52-week Low

k1

Last Trade (Real-time) With Time

k2

Change Percent (Real-time)

k3

Last Trade Size

k4

Change From 52-week High

k5

Percebt Change From 52-week High

l

Last Trade (With Time)

l1

Last Trade (Price Only)

l2

High Limit

l3

Low Limit

m

Day’s Range

m2

Day’s Range (Real-time)

m3

50-day Moving Average

m4

200-day Moving Average

m5

Change From 200-day Moving Average

m6

Percent Change From 200-day Moving Average

m7

Change From 50-day Moving Average

m8

Percent Change From 50-day Moving Average

n

Name

n4

Notes

o

Open

p

Previous Close

p1

Price Paid

p2

Change in Percent

p5

Price/Sales

p6

Price/Book

q

Ex-Dividend Date

r

P/E Ratio

r1

Dividend Pay Date

r2

P/E Ratio (Real-time)

r5

PEG Ratio

r6

Price/EPS Estimate Current Year

r7

Price/EPS Estimate Next Year

s

Symbol

s1

Shares Owned

s7

Short Ratio

t1

Last Trade Time

t6

Trade Links

t7

Ticker Trend

t8

1 yr Target Price

v

Volume

v1

Holdings Value

v7

Holdings Value (Real-time)

w

52-week Range

w1

Day’s Value Change

w4

Day’s Value Change (Real-time)

x

Stock Exchange

 

 

 

python获取yahoo财经信息工具类

 

   ystockquote.py

 

#!/usr/bin/env python
#
#  Copyright (c) 2007-2008, Corey Goldberg (corey@goldb.org)
#
#  license: GNU LGPL
#
#  This library is free software; you can redistribute it and/or
#  modify it under the terms of the GNU Lesser General Public
#  License as published by the Free Software Foundation; either
#  version 2.1 of the License, or (at your option) any later version.


import urllib


"""
This is the "ystockquote" module.

This module provides a Python API for retrieving stock data from Yahoo Finance.

sample usage:
>>> import ystockquote
>>> print ystockquote.get_price('GOOG')
529.46
"""


def __request(symbol, stat):
    url = 'http://finance.yahoo.com/d/quotes.csv?s=%s&f=%s' % (symbol, stat)
    return urllib.urlopen(url).read().strip().strip('"')


def get_all(symbol):
    """
    Get all available quote data for the given ticker symbol.
    
    Returns a dictionary.
    """
    values = __request(symbol, 'l1c1va2xj1b4j4dyekjm3m4rr5p5p6s7').split(',')
    data = {}
    data['price'] = values[0]
    data['change'] = values[1]
    data['volume'] = values[2]
    data['avg_daily_volume'] = values[3]
    data['stock_exchange'] = values[4]
    data['market_cap'] = values[5]
    data['book_value'] = values[6]
    data['ebitda'] = values[7]
    data['dividend_per_share'] = values[8]
    data['dividend_yield'] = values[9]
    data['earnings_per_share'] = values[10]
    data['52_week_high'] = values[11]
    data['52_week_low'] = values[12]
    data['50day_moving_avg'] = values[13]
    data['200day_moving_avg'] = values[14]
    data['price_earnings_ratio'] = values[15]
    data['price_earnings_growth_ratio'] = values[16]
    data['price_sales_ratio'] = values[17]
    data['price_book_ratio'] = values[18]
    data['short_ratio'] = values[19]
    return data
    
    
def get_price(symbol): 
    return __request(symbol, 'l1')


def get_change(symbol):
    return __request(symbol, 'c1')
    
    
def get_volume(symbol): 
    return __request(symbol, 'v')


def get_avg_daily_volume(symbol): 
    return __request(symbol, 'a2')
    
    
def get_stock_exchange(symbol): 
    return __request(symbol, 'x')
    
    
def get_market_cap(symbol):
    return __request(symbol, 'j1')
   
   
def get_book_value(symbol):
    return __request(symbol, 'b4')


def get_ebitda(symbol): 
    return __request(symbol, 'j4')
    
    
def get_dividend_per_share(symbol):
    return __request(symbol, 'd')


def get_dividend_yield(symbol): 
    return __request(symbol, 'y')
    
    
def get_earnings_per_share(symbol): 
    return __request(symbol, 'e')


def get_52_week_high(symbol): 
    return __request(symbol, 'k')
    
    
def get_52_week_low(symbol): 
    return __request(symbol, 'j')


def get_50day_moving_avg(symbol): 
    return __request(symbol, 'm3')
    
    
def get_200day_moving_avg(symbol): 
    return __request(symbol, 'm4')
    
    
def get_price_earnings_ratio(symbol): 
    return __request(symbol, 'r')


def get_price_earnings_growth_ratio(symbol): 
    return __request(symbol, 'r5')


def get_price_sales_ratio(symbol): 
    return __request(symbol, 'p5')
    
    
def get_price_book_ratio(symbol): 
    return __request(symbol, 'p6')
       
       
def get_short_ratio(symbol): 
    return __request(symbol, 's7')
    
    
def get_historical_prices(symbol, start_date, end_date):
    """
    Get historical prices for the given ticker symbol.
    Date format is 'YYYYMMDD'
    
    Returns a nested list.
    """
    url = 'http://ichart.yahoo.com/table.csv?s=%s&' % symbol + \
          'd=%s&' % str(int(end_date[4:6]) - 1) + \
          'e=%s&' % str(int(end_date[6:8])) + \
          'f=%s&' % str(int(end_date[0:4])) + \
          'g=d&' + \
          'a=%s&' % str(int(start_date[4:6]) - 1) + \
          'b=%s&' % str(int(start_date[6:8])) + \
          'c=%s&' % str(int(start_date[0:4])) + \
          'ignore=.csv'
    days = urllib.urlopen(url).readlines()
    data = [day[:-2].split(',') for day in days]
    return data
        

 

  使用工具类

 

import ystockquote
print ystockquote.get_price('600887.SS')

 

 

=======================

 

 

和讯网股票查询接口
2011-01-26 12:38

最近想自己写个股票查询的小软件,网上找到了新浪的javascript接口,比较方便,但是新浪的接口没有把换手率等信息直接返回,刚好看到和讯网的接口有这个信息,所以记录下来。

查询接口例:

http://bdcjhq.hexun.com/quote?s2=000001.sh,399001.sz,399300.sz,601186.sh

 

返回结果:

 

 <html><head><meta http-equiv="Content-Type" content="text/html; charset=GBK"><script type='text/javascript'>document.domain='hexun.com';</script></head><body></body><script>try{parent.bdcallback({"399001.sz":{na:"深证成指",pc:"11446.372",op:"11459.016",vo:"2193906",tu:"379028",hi:"11624.467",lo:"11459.016",la:"11558.021",type:"1",time:"2011-01-26 11:30:22"},"399300.sz":{na:"沪深300 ",pc:"2938.654",op:"2939.773",vo:"21205501",tu:"2559517",hi:"2971.763",lo:"2939.356",la:"2960.847",type:"1",time:"2011-01-26 11:31:07"},"601186.sh":{na:"中国铁建",pc:"7.22",op:"7.22",vo:"174035",tu:"12804",hi:"7.42",lo:"7.22",la:"7.39",type:"2",time:"2011-01-26 11:30:15",sy:"18.45",lt:"24.50",sz:"911.74",hs:"0.71",is:"0"},"tofnow":{time:"2011-01-26 11:37:51"}})}catch(e){}</script></html>
 

 从返回的结果看,股票数据应该就是JSON串,因此解析就比较方便了。

各个字段的意义如下:

"601186.sh":          //股票代码

{

na:"中国铁建",       //股票中文名称

pc:"7.22",           //昨收盘

op:"7.22",           //今开盘

vo:"174035",         //成交量

tu:"12804",          //成交额

hi:"7.42",           //最高价

lo:"7.22",           //最低价

la:"7.39",           //现价

type:"2",            //类型,1:指数,2:股票?

time:"2011-01-26 11:30:15", //时间

sy:"18.45",          //市盈率= 现价/最近四个季度摊薄每股收益之和

lt:"24.50",          //流通股数(单位:亿股)

sz:"911.74",         //总市值(单位:亿)

hs:"0.71",           //换手率

is:"0"               // ??暂时未知

}

 

 

 

参考:

 

http://0411.iteye.com/blog/1068239

http://www.goldb.org/ystockquote.html

http://hi.baidu.com/mryongzhang/blog/item/352bde597b862892800a1893.html

 

--heipark

 

 

分享到:
评论

相关推荐

    Python爬虫实战笔记-股票爬取示例.md

    ### Python爬虫实战笔记-股票爬取示例 #### 概述 本文旨在详细介绍Python爬虫的实际应用,尤其是针对股票数据的爬取和分析。文章首先通过模拟登录的例子介绍了如何利用Session对象保持登录状态;接着讲解了爬取API...

    financial-notebooks:有关金融分析主题的 IPython 笔记本集合

    1. 数据获取:通常涉及从股票交易所、财经新闻网站或API(如 Yahoo Finance、Alpha Vantage 或 Quandl)获取历史和实时数据。Python 库如 `pandas_datareader` 和 `yfinance` 在此过程中大有帮助。 2. 数据清洗与...

    JAVA系统连接雅虎的

    在Java编程语言中,开发一个连接雅虎财经的股票系统是一项常见的任务,这涉及到网络通信、数据抓取和解析等技术。以下是一些关键的知识点: 1. **Java网络编程**:首先,我们需要使用Java的Socket编程来实现与雅虎...

    backTest:我用于筛选算法和测试我的手动设置的python回测方法的集合

    有一次,两家公司都不允许通过其API免费访问股票数据,而我需要订阅API。 从那时起,我开始在Google表格中构建示例数据,并将其导出到CSV以进行基本测试。 如果有什么算法看起来很有希望,我会花钱在可靠的API数据...

    可再生能源库存

    1. **数据收集**:从各种财经数据源如Yahoo Finance、Google Finance或者专门的金融API获取股票历史数据。 2. **数据清洗**:处理缺失值,去除异常值,统一日期格式等,确保数据质量。 3. **特征工程**:创建有意义...

    行业分类-设备装置-一种交易终端设备.zip

    - **新闻资讯**:提供最新的财经新闻和市场评论,为决策提供参考。 - **风险管理**:设置止损、止盈点,帮助用户控制风险。 2. **交易终端类型**: - **桌面终端**:通常功能全面,适用于专业交易者,提供深度...

    sina.rarsina.rar

    由于新浪是中国知名的互联网公司,它涉及到的领域包括新闻、社交媒体、财经等多个方面,这个压缩包可能包含了这些领域的数据集、分析报告或者是关于新浪网站或微博平台的研究资料。 描述中的内容同样简洁,只重复了...

    finance4india

    这些数据可能来自股票交易所、财经新闻网站或者公开的金融数据库,例如 `.csv` 文件存储的股票历史价格数据。 3. **配置文件**:如果项目需要连接到特定的金融数据服务或者API,可能会有一个配置文件(如 `.json` ...

    ml_cta

    1. 数据获取:从交易所、财经网站或者API接口获取历史交易数据。 2. 数据预处理:清洗数据,处理缺失值、异常值,可能还需要对时间序列数据进行归一化或标准化。 3. 特征工程:根据交易策略的需求,创建新的特征,...

Global site tag (gtag.js) - Google Analytics