`
美丽的小岛
  • 浏览: 312173 次
  • 性别: Icon_minigender_1
  • 来自: 大连
社区版块
存档分类
最新评论

梯度下降法

 
阅读更多

本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com。如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任。

前言:

上次写过一篇关于贝叶斯概率论的数学,最近时间比较紧,coding的任务比较重,不过还是抽空看了一些机器学习的书和视频,其中很推荐两个:一个是 stanford的machine learning公开课,在verycd可下载,可惜没有翻译。不过还是可以看。另外一个是prml-pattern recognition and machine learning, Bishop的一部反响不错的书,而且是2008年的,算是比较新的一本书了。

前几天还准备写一个分布式计算的系列,只写了个开头,又换到写这个系列了。以后看哪边的心得更多,就写哪一个系列吧。最近干的事情比较杂,有跟机器学习相关的,有跟数学相关的,也有跟分布式相关的。

这个系列主要想能够用数学去描述机器学习,想要学好机器学习,首先得去理解其中的数学意义,不一定要到能够轻松自如的推导中间的公式,不过至少得认识这些 式子吧,不然看一些相关的论文可就看不懂了,这个系列主要将会着重于去机器学习的数学描述这个部分,将会覆盖但不一定局限于回归、聚类、分类等算法。

回归与梯度下降:

回归在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归,回归还有很多的变种,如locally weighted回归,logistic回归,等等,这个将在后面去讲。

用一个很简单的例子来说明回归,这个例子来自很多的地方,也在很多的open source的软件中看到,比如说weka。大概就是,做一个房屋价值的评估系统,一个房屋的价值来自很多地方,比如说面积、房间的数量(几室几厅)、地 段、朝向等等,这些影响房屋价值的变量被称为特征(feature),feature在机器学习中是一个很重要的概念,有很多的论文专门探讨这个东西。在 此处,为了简单,假设我们的房屋就是一个变量影响的,就是房屋的面积。

假设有一个房屋销售的数据如下:

面积(m^2)  销售价钱(万元)

123            250

150            320

87              160

102            220

…               …

这个表类似于帝都5环左右的房屋价钱,我们可以做出一个图,x轴是房屋的面积。y轴是房屋的售价,如下:

image

如果来了一个新的面积,假设在销售价钱的记录中没有的,我们怎么办呢?

我们可以用一条曲线去尽量准的拟合这些数据,然后如果有新的输入过来,我们可以在将曲线上这个点对应的值返回。如果用一条直线去拟合,可能是下面的样子:

image

绿色的点就是我们想要预测的点。

首先给出一些概念和常用的符号,在不同的机器学习书籍中可能有一定的差别。

房屋销售记录表 - 训练集(training set)或者训练数据(training data), 是我们流程中的输入数据,一般称为x

房屋销售价钱 - 输出数据,一般称为y

拟合的函数(或者称为假设或者模型),一般写做 y = h(x)

训练数据的条目数(#training set), 一条训练数据是由一对输入数据和输出数据组成的

输入数据的维度(特征的个数,#features),n

下面是一个典型的机器学习的过程,首先给出一个输入数据,我们的算法会通过一系列的过程得到一个估计的函数,这个函数有能力对没有见过的新数据给出一个新的估计,也被称为构建一个模型。就如同上面的线性回归函数。

image

我们用X1,X2..Xn 去描述feature里面的分量,比如x1=房间的面积,x2=房间的朝向,等等,我们可以做出一个估计函数:

image

θ在这儿称为参数,在这儿的意思是调整feature中每个分量的影响力,就是到底是房屋的面积更重要还是房屋的地段更重要。为了如果我们令X0 = 1,就可以用向量的方式来表示了:

image

我们程序也需要一个机制去评估我们θ是否比较好,所以说需要对我们做出的h函数进行评估,一般这个函数称为损失函数(loss function)或者错误函数(error function),描述h函数不好的程度,在下面,我们称这个函数为J函数

在这儿我们可以做出下面的一个错误函数:

image

这个错误估计函数是去对x(i)的估计值与真实值y(i)差的平方和作为错误估计函数,前面乘上的1/2是为了在求导的时候,这个系数就不见了。

如何调整θ以使得J(θ)取得最小值有很多方法,其中有最小二乘法(min square),是一种完全是数学描述的方法,在stanford机器学习开放课最后的部分会推导最小二乘法的公式的来源,这个来很多的机器学习和数学书 上都可以找到,这里就不提最小二乘法,而谈谈梯度下降法。

梯度下降法是按下面的流程进行的:

1)首先对θ赋值,这个值可以是随机的,也可以让θ是一个全零的向量。

2)改变θ的值,使得J(θ)按梯度下降的方向进行减少。

为了更清楚,给出下面的图:

image 这是一个表示参数θ与误差函数J(θ)的关系图,红色的部分是表示J(θ)有着比较高的取值,我们需要的是,能够让J(θ)的值尽量的低。也就是深蓝色的部分。θ0,θ1表示θ向量的两个维度。

在上面提到梯度下降法的第一步是给θ给一个初值,假设随机给的初值是在图上的十字点。

然后我们将θ按照梯度下降的方向进行调整,就会使得J(θ)往更低的方向进行变化,如图所示,算法的结束将是在θ下降到无法继续下降为止。

image 当然,可能梯度下降的最终点并非是全局最小点,可能是一个局部最小点,可能是下面的情况:

image

上面这张图就是描述的一个局部最小点,这是我们重新选择了一个初始点得到的,看来我们这个算法将会在很大的程度上被初始点的选择影响而陷入局部最小点

下面我将用一个例子描述一下梯度减少的过程,对于我们的函数J(θ)求偏导J:(求导的过程如果不明白,可以温习一下微积分)

image

下面是更新的过程,也就是θi会向着梯度最小的方向进行减少。θi表示更新之前的值,-后面的部分表示按梯度方向减少的量,α表示步长,也就是每次按照梯度减少的方向变化多少。

image 一个很重要的地方值得注意的是,梯度是有方向的,对于一个向量θ,每一维分量θi都可以求出一个梯度的方向,我们就可以找到一个整体的方向,在变化的时候,我们就朝着下降最多的方向进行变化就可以达到一个最小点,不管它是局部的还是全局的。

用更简单的数学语言进行描述步骤2)是这样的:

image 倒三角形表示梯度,按这种方式来表示,θi就不见了,看看用好向量和矩阵,真的会大大的简化数学的描述啊。

分享到:
评论

相关推荐

    机器学习_梯度下降算法实现

    在机器学习领域,梯度下降算法是一种非常基础且重要的优化方法,主要用于求解函数的最小值,尤其是在训练神经网络和构建各种预测模型时。本文将深入探讨梯度下降的原理、实现过程以及它在实际应用中的重要性。 一、...

    梯度下降算法matlab的实现

    梯度下降算法是一种在机器学习和优化问题中广泛使用的迭代方法,用于求解函数的局部最小值。在本示例中,我们关注的是如何在MATLAB环境中实现这一算法。MATLAB是一款强大的数学计算软件,适合进行数值分析和算法开发...

    两种梯度下降法

    在机器学习领域,梯度下降法是优化模型参数的核心算法之一,它被广泛应用于各种监督学习模型的训练过程。本文将深入探讨两种主要的梯度下降法:批梯度下降(Batch Gradient Descent)和随机梯度下降(Stochastic ...

    随机梯度下降算法

    与传统的梯度下降法相比,随机梯度下降每次迭代只使用一个样本来更新权重,而不是整个数据集的平均梯度,这大大减少了计算成本。 `test.m` 文件很可能是测试随机梯度下降算法的脚本,它会调用 `SGD.m` 文件中的函数...

    Logistic算法(随机梯度下降法)的Python代码和数据样本

    相比于传统的梯度下降法,SGD每次迭代只用到一个样本来更新模型参数,因此计算速度快且能够避免局部最优,特别是在大数据集上表现优秀。然而,SGD可能会导致模型震荡,使得训练过程不稳定,因此通常需要设置合适的...

    梯度下降法,梯度下降法原理和步骤,matlab

    梯度下降法是一种在优化问题中广泛使用的数值方法,尤其在机器学习和深度学习领域,它是求解损失函数最小化的主要算法之一。本篇将详细解释梯度下降法的原理、步骤以及如何在MATLAB中实现它。 **一、梯度下降法原理...

    梯度下降算法代码及详细解释_梯度下降算法_梯度下降matlab_

    梯度下降算法是一种在机器学习和优化问题中广泛使用的迭代方法,主要用于求解函数的局部最小值。在本文中,我们将深入探讨梯度下降的概念、原理,并通过MATLAB实现进行详细解释。 首先,理解梯度的基本概念至关重要...

    MATLAB实现梯度下降算法(gradient descent),案例丰富【数学建模、科学计算算法】.zip

    4. **科研数据分析**:在数据分析中,梯度下降可以帮助我们找到最佳拟合模型,比如在回归分析中,通过梯度下降法调整模型参数,使得预测误差最小化。MATLAB的统计和机器学习工具箱包含了许多预定义的模型,但自定义...

    梯度下降法以及MATLAB相关资料

    描述中提到的博客《逻辑与思考系列[1/300]: 梯度下降法及matlab实践》可能详细介绍了如何利用MATLAB来实现梯度下降算法。通常,该博客可能会涵盖以下内容: 1. **梯度计算**:解释如何在MATLAB中计算目标函数的梯度...

    梯度下降法VS2008_C++

    在本项目中,"梯度下降法VS2008_C++" 提供了一个使用C++编程语言在Visual Studio 2008环境下实现梯度下降算法的实例。通过这个项目,我们可以深入理解梯度下降法的原理及其在C++中的实现。 梯度下降法的基本思想是...

    随机梯度下降与小批量梯度下降算法

    损失使用平方函数,简单的线性模型 y = theta1 + theta2 * x

    梯度下降算法综述.docx

    梯度下降算法有多种变种,包括批量梯度下降算法(Batch Gradient Descent)、随机梯度下降算法(Stochastic Gradient Descent)和小批量梯度下降算法(Mini-batch Gradient Descent)。 批量梯度下降算法是指使用...

    c#实现梯度下降算法

    c#实现梯度下降算法逻辑回归c#实现梯度下降算法逻辑回归c#实现梯度下降算法逻辑回归

    梯度下降算法代码及详细解释(非常易懂).zip

    梯度下降算法是一种在机器学习和优化问题中广泛使用的迭代方法,主要用于求解函数的局部最小值。在本文中,我们将深入探讨梯度下降的基本概念、工作原理、数学基础,以及如何通过Matlab实现它。 一、梯度下降概述 ...

    梯度下降法,梯度下降法原理和步骤,matlab源码 (1).zip

    梯度下降法是一种在优化问题中广泛使用的迭代算法,尤其在机器学习和深度学习领域,用于寻找函数最小值。它的核心思想是沿着目标函数梯度的反方向不断更新参数,以逐步接近局部或全局最小值。以下是梯度下降法的详细...

    梯度下降详解(包含简单代码示例)

    梯度下降详解 梯度下降是一种常用的机器学习算法,用于寻找函数的最小值,以解决回归问题。下面是对梯度下降算法的详细讲解,包括原理讲解、算法实例和简单代码示例。 原理讲解 梯度下降算法的原理是通过迭代更新...

    kNN_梯度下降算法_

    kNN(K-最近邻)算法与梯度下降算法是机器学习领域中两种重要的方法,它们各自在不同的问题上发挥着关键作用。 首先,我们来深入理解kNN算法。kNN是一种非参数监督学习方法,主要用于分类任务。其基本思想是,给定...

    梯度下降法在机器学习中的应用

    针对机器学习中损失函数优化问题,引入梯度下降法及其变体算法,用迭代的方 式求解其近似最优解,采用梯度下降法最小化损失函数,在MATLAB等程序实现的基 础上进行研究。对线性回归模型、逻辑斯谛回归模型学习的梯度...

Global site tag (gtag.js) - Google Analytics