在计算机内部,所有的信息终于都是表示为0和1去展示,但是如何表达出那么多的字符呢?
一、二进制位(bit)
在计算机内部,所有的信息最终都表示为一个二进制的字符串。每一个二进制位(bit)有0和1两种状态。
二、字节(byte)
通过八个二进制位就可以组合出256种状态,这被称为一个字节(byte)。
也就是说,一个字节一共可以用来表示256种不同的状态,每一个状态对应一个符号,就是256个符号,从0000000到11111111。
三、ASCII码
上个世纪60年代,美国制定了一套字符编码,对英语字符与二进制位之间的关系,做了统一规定。这被称为ASCII码,一直沿用至今。ASCII码
ASCII码一共规定了128个字符的编码,比如空格”SPACE”是32(二进制00100000),大写的字母A是65(二进制01000001)。这128个符号(包括32个不能打印出来的控制符号),只占用了一个字节的后面7位,最前面的1位统一规定为0。
四、非ASCII编码
英语用128个符号编码就够了,但是用来表示其他语言,128个符号是不够的。比如拉丁文中的α,它就无法用ASCII码表示。
于是,一些欧洲国家就决定,利用字节中闲置的最高位编入新的符号。比如,法语中的é的编码为130(二进制10000010)。这样一来,这些欧洲国家使用的编码体系,可以表示最多256个符号。
但是,这里又出现了新的问题。
(1)、不同的国家有不同的字母,因此,哪怕它们都使用256个符号的编码方式,代表的字母却不一样。比如,130在法语编码中代表了é,在希伯来语编码中却代表了字母Gimel (ג),在俄语编码中又会代表另一个符号。但是不管怎样,所有这些编码方式中,0–127表示的符号是一样的,不一样的只是128–255的这一段。
(2)、至于亚洲国家的文字,使用的符号就更多了,比如我们的汉字就多达10万左右。一个字节只能表示256种符号,肯定是不够的,就必须使用多个字节表达一个符号。
所以又有了一些新的编码方式。
比如简体中文常见的编码方式是GBK和GB2312,GB2312使用两个字节表示一个汉字,所以理论上最多可以表示256x256=65536个符号。中文编码的问题需要专文讨论,这篇笔记不涉及。这里只指出,虽然都是用多个字节表示一个符号,但是GB类的汉字编码与后文的Unicode和UTF-8是毫无关系的。
但是问题来了,各种各样的编码方式,太多了,需要一种统一的方式来兼容各种文字和符号。
五、Unicode字符集
世界上存在着多种编码方式,同一个二进制数字可以被解释成不同的符号。因此,要想打开一个文本文件,就必须知道它的编码方式,否则用错误的编码方式解读,就会出现乱码。为什么电子邮件常常出现乱码?就是因为发信人和收信人使用的编码方式不一样。
可以想象,如果有一种编码,将世界上所有的符号都纳入其中。每一个符号都给予一个独一无二的编码,那么乱码问题就会消失。这就是Unicode,就像它的名字都表示的,这是一种所有符号的编码。
Unicode当然是一个很大的集合,现在的规模可以容纳100多万个符号。每个符号的编码都不一样,比如,U+0639表示阿拉伯字母Ain,U+0041表示英语的大写字母A,U+4E25表示汉字”严”。具体的符号对应表,可以查询unicode.org,或者专门的汉字对应表。
Unicode的问题:
需要注意的是,Unicode只是一个符号集,它只规定了符号的二进制代码,不像ASCII编码,GB2312编码,都是和每个字符集表一一对应的,Unicode没有规定这个二进制代码应该如何存储。
比如,汉字”严”的unicode是十六进制数4E25,转换成二进制数足足有15位(100111000100101),也就是说这个符号的表示至少需要2个字节。表示其他更大的符号,可能需要3个字节或者4个字节,甚至更多。
这里就有两个严重的问题,第一个问题是,如何才能区别Unicode和ASCII?计算机怎么知道三个字节表示一个符号,而不是分别表示三个符号呢?第二个问题是,我们已经知道,英文字母只用一个字节表示就够了,如果Unicode统一规定,每个符号用三个或四个字节表示,那么每个英文字母前都必然有二到三个字节是0,这对于存储来说是极大的浪费,文本文件的大小会因此大出二三倍,这是无法接受的。
它们造成的结果是:
(1)、出现了Unicode的多种存储方式,也就是说有许多种不同的二进制格式,可以用来表示Unicode。
(2)、Unicode在很长一段时间内无法推广,直到互联网的出现。
六、UTF-8编码
互联网的普及,强烈要求出现一种统一的编码方式。UTF-8就是在互联网上使用最广的一种Unicode的实现方式。其他实现方式还包括UTF-16(字符用两个字节或四个字节表示)和UTF-32(字符用四个字节表示),不过在互联网上基本不用。
重复一遍,这里的关系是,UTF-8是Unicode字符集编码实现方式之一。
UTF-8最大的一个特点,就是它是一种变长的编码方式。它可以使用1~4个字节表示一个符号,根据不同的符号而变化字节长度。
UTF-8的编码规则很简单,只有二条:
(1)、对于单字节的符号,字节的第一位设为0,后面7位为这个符号的unicode码。因此对于英语字母,UTF-8编码和ASCII码是相同的。
(2)、对于n字节的符号(n>1),第一个字节的前n位都设为1,第n+1位设为0,后面字节的前两位一律设为10。剩下的没有提及的二进制位,全部为这个符号的unicode码。
相关推荐
以下是RC滤波、LC滤波、CRC滤波、CLC滤波、DLC滤波、LCL滤波的概述: RC滤波 原理:利用电阻(R)和电容(C)对不同频率信号的阻抗变化来实现滤波。低频信号下,电容充电和放电较慢,对信号形成阻碍;高频信号下,电容能够快速充放电,对信号的阻碍较小。 类型: 低通RC滤波器:允许低频信号通过,抑制高频信号。当信号频率升高时,电容器充放电速度加快,使得高频信号在电阻两端产生压降,从而降低输出信号的幅度。 高通RC滤波器:允许高频信号通过,抑制低频信号。在低频时,电容器相当于开路,电路的大部分信号都会被电阻所吸收;在高频时,电容器相当于短路,输入信号能较完整地传到输出端。 优点:电路简单,成本低廉,易于设计和实现。 缺点:滤波效果相对较弱,对高频噪声的抑制能力有限。 应用:常用于简单的信号处理、去噪、音频系统中的低通和高通滤波等。 LC滤波 原理:基于电感(L)和电容(C)元件对频率的响应差异。电感对高频信号呈现高阻抗(近似短路),对低频信号呈现低阻抗(近似开路);电容则相反,对低频信号呈现高阻抗(近似开路),对高频信号呈现低阻抗(近似短路)。 类型: 低通滤波器:允许低频信号通过
校园服务系统 免费JAVA毕业设计 2024成品源码+论文+录屏+启动教程 启动教程:https://www.bilibili.com/video/BV1jKDjYrEz1 项目讲解视频:https://www.bilibili.com/video/BV1Tb421n72S 二次开发教程:https://www.bilibili.com/video/BV18i421i7Dx
**快速进阶:西门子PLC编程高手养成记** 这个标题涵盖了您提供的文字中的关键信息,包括“西门子PLC编程”、“高手养成”等元素,同时也保持了简洁明了的风格。,如何短时间内成为西门子PLC编程高手 看这里:码垛搬运模型 【功能块】码垛搬运功能块 【品牌】西门子 【PLC】1200 【编程软件】博图v16 【编程语言】scl 【特色】以设定的上限和下限为范围,生成随机数。 可以用作模拟量仿真,方便调试程序; 学习用SCL语言编程; 作为数据源演示给领导或客户看; 可无限复制使用。 【说明】:程序不要把时间用来造轮子,这里有的你拿走,保留精力用来创造优质的功能快让你在工作中事半功倍factory Io和博途软件进行联合仿真,码垛搬运层数可以自定义设置,最大层数3,有报警显示功能,位置监视,复位,停止功能。 程序通俗易懂,规范模块化,可以随意增加新功能。 物品有,Factory IO仿真模型+博途v16安装包+博途码垛程序+HMI程序+factory IO安装包2.50版本。 ,关键词
,电机控制器,IGBT结温估算(算法+模型)国际大厂机密算法,多年实际应用,准确度良好…… 能够同时对IGBT内部6个三极管和6个二极管温度进行估计,并输出其中最热的管子对应温度。 可用于温度保护,降额,提高产品性能。 simulink模型除仿真外亦可生成代码…… 提供直流、交流两个仿真模型 提供底层算法模型库(开源,带数据 ) 提供说明文档
"COMSOL模拟:双层多孔介质中油类物质地下渗透扩散现象的时空演变研究",comsol模拟油往地下渗透现象,考虑两层多孔介质,结果显示出油随着时间逐渐向下扩散。 ,comsol模拟;油渗透;两层多孔介质;时间扩散;结果展示,COMSOL模拟两层多孔介质中油渗透扩散现象。
4b076399e3f709dc8990bd0e12720254.part7
基于深度学习的钢轨病害检测算法研究.pdf
西门子Smart200PLC与多台台达变频器实现Modbus轮询通讯:读写参数、控制启停、设置频率及电流监控实用指南,西门子smart200plc与4台台达变频器modbus轮询通讯 VFD-EL小型矢量变频器 1,读写变频器的内部参数 2,控制变频器启停,读频率电流 3,设置变频器输出频率 4,有彩色接线图,和参数设置说明, 有详细注释,简单易懂,可以学习可用项目, ,西门子Smart200PLC; Modbus轮询通讯; 变频器控制; 读写参数; 输出频率设置; 彩色接线图; 参数设置说明; 简单易懂注释。,西门子PLC与台达变频器Modbus轮询通讯项目指南
EI复现:碳减排背景下综合能源服务商合作策略的纳什谈判理论与自适应交替方向乘子法求解,EI复现: 《考虑碳减排的综合能源服务商合作运行优化策略》 纯手工复现,主要通过纳什谈判理论进行博弈,并采用自适应交替方向乘子法进行分布式求解 ,核心关键词:EI复现; 碳减排; 综合能源服务商; 合作运行优化策略; 纳什谈判理论; 博弈; 自适应交替方向乘子法; 分布式求解,EI复现:纳什谈判理论下的碳减排能源服务商合作运行优化策略
"扬子YD9850A耐压仪的LabVIEW通讯源码解析与应用",扬子YD9850A耐压仪labVIEW通讯源码 ,扬子YD9850A; 耐压仪; labVIEW通讯; 源码,扬子YD9850A耐压仪LabVIEW通讯源码
全覆盖与随机碰撞路径规划——AGV避障技术在扫地机器人移动仿真中的应用与对比,AGV全覆盖移动避障路径规划 扫地机器人路径规划 第一类算法 全覆盖智能算法 %% 基于深度优先搜索算法的路径规划—扫地机器人移动仿真 % 返回深度优先搜索实现全覆盖的运行次数 % 将栅格模型的每一个栅格看成一个点 % 实际中栅格模型是连续的,在计算机处理时看作离散的 % 将栅格模型抽象为标识矩阵,矩阵对应位置的标记表示栅格对应位置的状态 第二对比算法 %% 随机碰撞的路径规划—扫地机器人移动仿真 % 返回深度优先搜索实现全覆盖的运行次数 % 将栅格模型的每一个栅格看成一个点 % 实际中栅格模型是连续的,在计算机处理时看作离散的 % 将栅格模型抽象为标识矩阵,矩阵对应位置的标记表示栅格对应位置的状态 ,核心关键词: AGV全覆盖移动避障; 扫地机器人路径规划; 全覆盖智能算法; 深度优先搜索算法; 栅格模型; 标识矩阵。,基于全覆盖智能算法的AGV避障路径规划
"基于Matlab仿真的15kW三相离网逆变器在不对称负载下的正负序控制策略研究及其实验验证",15kW三相离网逆变器在不对称负载下的正负序控制matlab仿真 【1】卖家的研究方向,可提供简单,提供参考文献。 【2】不对称控制包括: 正序分量处理+负序分量处理+正序控制环+负序控制环; 【3】正序控制路与负序控制路都采用dq轴上的电容电压外环+电感电流内环控制; 【4】直流电压Vdc=700V,总功率15kW,LC滤波,阻性负载; 【5】轻重负载切+不对称负载投切均可稳定运行,具体波形如图所示; ,1. 15kW三相离网逆变器; 2. 不对称负载下的正负序控制; 3. MATLAB仿真; 4. 正负序分量处理; 5. 环路控制; 6. dq轴控制; 7. LC滤波; 8. 阻性负载; 9. 轻重负载切换; 10. 不对称负载投切稳定运行。,15kW三相离网逆变器的不对称负载控制Matlab仿真研究
电影数据分析及可视化系统 免费Python毕业设计 2024成品源码+论文+录屏+启动教程 启动教程:https://www.bilibili.com/video/BV1jKDjYrEz1 项目讲解视频:https://www.bilibili.com/video/BV1Tb421n72S 二次开发教程:https://www.bilibili.com/video/BV18i421i7Dx
"COMSOL光学模型解析:点光源与平面波穿越透镜的动态演变过程",COMSOL光学模型演示:点光源和平面波穿过透镜动态过程 ,COMSOL光学模型;点光源;平面波;透镜;动态过程,COMSOL透镜中光波动态传播模型演示
"基于CEEMD-GWO-SVM算法的时间序列预测:风电、光伏、负荷预测通用解决方案",基于CEEMD+GWO+SVM的时间序列预测,风电,光伏,负荷预测,替数据就可以使用。 ,CEEMD; GWO; SVM; 时间序列预测; 风电; 光伏; 负荷预测; 替换数据,基于CEEMD-GWO-SVM算法的能源时间序列预测模型
基于85三菱组态王PLC的药片装瓶自动控制系统的设计与实现,85三菱组态王基于PLC的药片装瓶自动控制系统 ,基于该内容,核心关键词可以是:85三菱组态王;PLC;药片装瓶;自动控制系统。这些关键词用分号分隔的结果为:85三菱组态王; PLC; 药片装瓶; 自动控制系统。,基于PLC的85三菱组态王药片装瓶自动控制系统
《CARSIM与Simulink联合仿真:实现变道及复杂路径规划的MPC轨迹跟踪算法》,carsim+simulink联合仿真实现变道 包含路径规划算法+mpc轨迹跟踪算法 可选simulink版本和c++版本算法(价格一样,如需要2个版本多加30元) 可以适用于弯道道路,弯道车道保持,弯道变道 carsim内规划轨迹可视化 Carsim2020.0 Matlab2017b (可安装包) ,汽车仿真联合;变道与轨迹规划;MPC轨迹跟踪算法;路径规划算法;Carsim2020.0版使用。,"Carsim与Simulink联合仿真:变道与轨迹跟踪算法实现"
在tf.Keras中使用Scikit-Learn优化模型
基于EEMD-PCA-LSTM的优化模型:特征处理与预测效果提升的新方法,EEMD-PCA-LSTM(集合经验模态分解-主成分分析-长短期记忆网络) 将输入特征进行EEMD分解后,通过KPCA判定分解分解累计贡献率,将大于98%的作为新的输入特征同预测序列导入到LSTM进行预测。 与LSTM、EEMD-LSTM进行对比,预测效果获得提升。 该模型可提升度高。 ,EEMD; PCA; LSTM; 特征处理; 预测效果提升; 模型可提升度高,EEMD-PCA-LSTM混合模型:预测效果提升显著的可提升模型
shopping_basket.xlsx