`
haoningabc
  • 浏览: 1482644 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

tf使用model的helloworld

阅读更多
yum install automake autoconf libtool libicu gcc-c++
####yum install bazel -y  这样安装版本过新会报错:
lease downgrade your bazel installation to version 0.26.1 or lower to build TensorFlow

yum -y install epel-release
yum -y install python-pip

git clone http://github.com/tensorflow/tensorflow



https://github.com/bazelbuild/bazel/releases/tag/0.26.1

去下载相关的版本的bazel

BAZEL_VERSION="0.26.1"     # insert your desired version here, for example 0.26.0
$ wget https://github.com/bazelbuild/bazel/releases/download/${BAZEL_VERSION}/bazel-${BAZEL_VERSION}-installer-linux-x86_64.sh   # if not on x86_64, change that too
$ chmod +x bazel-${BAZEL_VERSION}-installer-linux-x86_64.sh   # or the file you just downloaded
$ ./bazel-${BAZEL_VERSION}-installer-linux-x86_64.sh
$ bazel version   # this should now print the same as BAZEL_VERSION




参考 https://www.cnblogs.com/harrymore/p/10028489.html
不好用
bazel build -c opt --copt=-msse4.1 --copt=-msse4.2 //tensorflow/tools/pip_package:build_pip_package


https://www.dearcodes.com/index.php/archives/25/
pip install --upgrade pip


pip install numpy grpcio Keras-Applications Keras-Preprocessing h5py requests enum --trusted-host pypi.doubanio.com

import tensorflow as tf
hello = tf.constant('Hello, Tensorflow!')
sess = tf.Session()
print(sess.run(hello))

a = tf.constant(66)
b = tf.constant(88)
print(sess.run(a + b))





conda create -n bazelevn python=3

source activate bazelevn
cd tensorflow
./configure
全选no
pip install numpy
git submodule foreach git pull origin master


bazel build tensorflow/python/tools:freeze_graph


##################  conda 环境:
conda update --all

conda create -n bazelenv python=3

source activate bazelenv

#conda deactivate

#conda remove bazelenv

git clone http://github.com/tensorflow/tensorflow

./configure
全选no

bazel build //tensorflow:libtensorflow.so //tensorflow/contrib/session_bundle:session_bundle



############  测试一个tf生成模型,使用模型,再用调用so的过程使用模型的过程

conda create -n tfenv
conda install -n tfenv tensorflow

参考 https://blog.csdn.net/zmlovelx/article/details/80919193
创建模型:
saver_hello.py
import tensorflow as tf
if __name__ == '__main__':
    hello = tf.Variable(tf.constant('Hello World', name = "hello"))
    #init = tf.initialize_all_variables() #deprecated
    init = tf.global_variables_initializer()
    sess = tf.Session()
    sess.run(init)
    saver = tf.train.Saver()
    saver.save(sess, "./hello_model")

使用模型:
restore_hello.py
import tensorflow as tf
if __name__ == '__main__':
    restore = tf.train.import_meta_graph("hello_model.meta")
    sess = tf.Session()
    restore.restore(sess, "hello_model")
    print(sess.run(tf.get_default_graph().get_tensor_by_name("hello:0")))

验证
python saver_hello.py
生成 hello_model.meta 等文件
python restore_hello.py


main.cpp
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <opencv2/core.hpp>
int main( int argc, char **argv )
{
    if (argc != 2)
    {
        printf( "argc %d != 2\n", argc );
        exit(-1);
    }
    cv::dnn::Net net = cv::dnn::readNetFromTensorflow(argv[1]);
    return 0;
}

CMakeLists.txt
cmake_minimum_required(VERSION 2.8)
project( test )
#set(OpenCV_DIR /usr/local/Cellar/opencv@2/2.4.13.7_5)
set(OpenCV_DIR /usr/local/Cellar/opencv/4.1.1_2)
#INCLUDE_DIRECTORIES("${OpenCV_DIR}/include")

SET(CMAKE_CXX_FLAGS "-g -O3 -Ddarwin -std=c++11")

INCLUDE_DIRECTORIES("${OpenCV_DIR}/include/opencv4")
LINK_DIRECTORIES("${OpenCV_DIR}/lib")

add_executable(test main.cpp)

target_link_libraries(test opencv_core)
target_link_libraries(test opencv_highgui)
target_link_libraries(test opencv_ml)
target_link_libraries(test opencv_dnn)


注意需要opencv_dnn , 还有include的路径不太一样
mkdir build
cd build
cmake ..
make
./test ../hello_model.index



##############   需要opencv




brew search opencv
brew install opencv
#这个里面含dnn
普通的用下面这个
brew install opencv@2


#For compilers to find openblas you may need to set:
# export LDFLAGS="-L/usr/local/opt/openblas/lib"
#  export CPPFLAGS="-I/usr/local/opt/openblas/include"

#For pkg-config to find openblas you may need to set:
#  export PKG_CONFIG_PATH="/usr/local/opt/openblas/lib/pkgconfig"

假设安装到了/usr/local/Cellar/opencv@2/2.4.13.7_5

opencv的helloworld:
#include "opencv2/opencv.hpp"
#include "opencv2/highgui/highgui.hpp"
using namespace cv;
int main(int argc, char** argv) {
    //create a gui window:
    namedWindow("Output",1);
    //initialize a 120X350 matrix of black pixels:
    Mat output = Mat::zeros( 120, 350, CV_8UC3 );
    //write text on the matrix:
    putText(output,
            "Hello World :)",
            cvPoint(15,70),
            FONT_HERSHEY_PLAIN,
            3,
            cvScalar(0,255,0),
            4);
    //display the image:
    imshow("Output", output);
    //wait for the user to press any key:
    waitKey(0);
    return 0;
}



g++ -I/usr/local/Cellar/opencv@2/2.4.13.7_5/include -L /usr/local/Cellar/opencv@2/2.4.13.7_5/lib -lopencv_core  -lopencv_highgui -lopencv_ml  main.cpp

如果用cmake,
CMakeLists.txt为
cmake_minimum_required(VERSION 2.8)
project( test )
set(OpenCV_DIR /usr/local/Cellar/opencv@2/2.4.13.7_5)
INCLUDE_DIRECTORIES("${OpenCV_DIR}/include")
LINK_DIRECTORIES("${OpenCV_DIR}/lib")

add_executable(test main.cpp)

target_link_libraries(test opencv_core)
target_link_libraries(test opencv_highgui)
target_link_libraries(test opencv_ml)

注意最重要的三个库 opencv_core opencv_highgui opencv_ml

mkdir build
cd build
cmake ..
make
./test 验证

#####################
















分享到:
评论

相关推荐

    MNIST数据集

    MNIST数据集之所以成为深度学习的“Hello, World!”,是因为它的规模适中,易于处理,同时又具有一定的挑战性,能很好地展示深度学习模型(如卷积神经网络CNN)在图像识别任务上的优势。通过MNIST数据集,初学者可以...

    TensorFlow 之 手写数字识别MNIST

    MNIST是Machine Learning的"Hello, World",是初学者了解和实践神经网络的理想起点。 TensorFlow是Google开发的一个开源库,用于构建和部署机器学习模型。它提供了一个强大的接口,使得开发者能够方便地定义、训练...

    mnist数据集,用于人工智能 深度学习

    在深度学习中,Mnist数据集因其简单性、可访问性和准确性而被视为“Hello World”级别的项目。 **TensorFlow2简介** TensorFlow是由Google开发的一个开源库,用于数值计算和大规模机器学习。它的第二版,...

    x86 x64体系探索及编程part3

    14 1.2.5 浮点数精度的转换 15 1.2.6 浮点数的溢出 17 1.2.7 BCD 码 20 1.2.8 SIMD 数据 21 第2 章 x86/x64 编程基础 23 2.1 选择编译器 23 2.2 机器语言 24 2.3 Hello world 25 2.3.1 使用寄存器传递参数 ...

    x86 x64体系探索及编程part4

    14 1.2.5 浮点数精度的转换 15 1.2.6 浮点数的溢出 17 1.2.7 BCD 码 20 1.2.8 SIMD 数据 21 第2 章 x86/x64 编程基础 23 2.1 选择编译器 23 2.2 机器语言 24 2.3 Hello world 25 2.3.1 使用寄存器传递参数 ...

    x86 x64体系探索及编程 part2

    14 1.2.5 浮点数精度的转换 15 1.2.6 浮点数的溢出 17 1.2.7 BCD 码 20 1.2.8 SIMD 数据 21 第2 章 x86/x64 编程基础 23 2.1 选择编译器 23 2.2 机器语言 24 2.3 Hello world 25 2.3.1 使用寄存器传递参数 ...

    x86 x64体系探索及编程part1

    14 1.2.5 浮点数精度的转换 15 1.2.6 浮点数的溢出 17 1.2.7 BCD 码 20 1.2.8 SIMD 数据 21 第2 章 x86/x64 编程基础 23 2.1 选择编译器 23 2.2 机器语言 24 2.3 Hello world 25 2.3.1 使用寄存器传递参数 ...

    Edge-TPU

    3. 验证安装:安装完成后,你可以通过运行一个简单的示例来验证Edge-TPU是否正常工作,例如运行官方提供的“hello world”程序。 Edge-TPU支持ONNX和TensorFlow Lite模型格式。如果你有一个已经训练好的模型,可能...

    手写数字识别.7z

    MNIST数据集简单但富有挑战性,是每一位希望在机器学习和深度学习领域深入探索的人士的“Hello, World”。 在解压"手写数字识别.7z"文件后,你会找到包含数据集和可能的Python代码示例的文件夹。利用这些资源,你...

    聊聊Python都能做些什么

    def hello_world(): return render_template('index.html') @app.route('/submit', methods=['POST']) def submit_data(): name = request.form['name'] return f"Hello, {name}!" if __name__ == '__main__': ...

    XML解析与生成

    child.setTextContent("Hello, World!"); root.appendChild(child); Transformer tf = TransformerFactory.newInstance().newTransformer(); tf.transform(new DOMSource(doc), new StreamResult(System.out));...

    API

    model = tf.keras.models.Sequential([tf.keras.layers.Dense(1)]) ``` 5. **Flask和Django**:这两个是Python的Web框架,提供丰富的API用于构建Web应用。例如,用Flask定义一个路由: ```python from flask ...

Global site tag (gtag.js) - Google Analytics