`
hanxinyu
  • 浏览: 127293 次
  • 来自: henan china
社区版块
存档分类
最新评论

BI项目中ETL设计与思考

    博客分类:
  • BI
阅读更多
ETL即数据抽取(Extract)、转换(Transform)、装载(Load)的过程,它是构建数据仓库的重要环节。

 

    ETL是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程,目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。ETL是BI项目重要的一个环节。通常情况下,在BI项目中ETL会花掉整个项目的1/3的时间,ETL设计的好坏直接关接到BI项目的成败。

  ETL的设计分三部分:数据抽取、数据的清洗转换、数据的加载。在设计ETL的时候我们也是从这三部分出发。数据的抽取是从各个不同的数据源抽取到ODS(OperationalDataStore,操作型数据存储)中——这个过程也可以做一些数据的清洗和转换),在抽取的过程中需要挑选不同的抽取方法,尽可能的提高ETL的运行效率。ETL三个部分中,花费时间最长的是“T”(Transform,清洗、转换)的部分,一般情况下这部分工作量是整个ETL的2/3。数据的加载一般在数据清洗完了之后直接写入DW(DataWarehousing,数据仓库)中去。

  ETL的实现有多种方法,常用的有三种。一种是借助ETL工具(如Oracle的OWB、SQLServer2000的DTS、SQLServer2005的SSIS服务、Informatic等)实现,一种是SQL方式实现,另外一种是ETL工具和SQL相结合。前两种方法各有各的优缺点,借助工具可以快速的建立起ETL工程,屏蔽了复杂的编码任务,提高了速度,降低了难度,但是缺少灵活性。SQL的方法优点是灵活,提高ETL运行效率,但是编码复杂,对技术要求比较高。第三种是综合了前面二种的优点,会极大地提高ETL的开发速度和效率。

  一、数据的抽取

  这一部分需要在调研阶段做大量的工作,首先要搞清楚数据是从几个业务系统中来,各个业务系统的数据库服务器运行什么DBMS,是否存在手工数据,手工数据量有多大,是否存在非结构化的数据等等,当收集完这些信息之后才可以进行数据抽取的设计。

  1、对于与存放DW的数据库系统相同的数据源处理方法

  这一类数据源在设计上比较容易。一般情况下,DBMS(SQLServer、Oracle)都会提供数据库链接功能,在DW数据库服务器和原业务系统之间建立直接的链接关系就可以写Select语句直接访问。

  2、对于与DW数据库系统不同的数据源的处理方法

  对于这一类数据源,一般情况下也可以通过ODBC的方式建立数据库链接——如SQLServer和Oracle之间。如果不能建立数据库链接,可以有两种方式完成,一种是通过工具将源数据导出成.txt或者是.xls文件,然后再将这些源系统文件导入到ODS中。另外一种方法是通过程序接口来完成。

  3、对于文件类型数据源(.txt,.xls),可以培训业务人员利用数据库工具将这些数据导入到指定的数据库,然后从指定的数据库中抽取。或者还可以借助工具实现,如SQLServer2005的SSIS服务的平面数据源和平面目标等组件导入ODS中去。

  4、增量更新的问题

  对于数据量大的系统,必须考虑增量抽取。一般情况下,业务系统会记录业务发生的时间,我们可以用来做增量的标志,每次抽取之前首先判断ODS中记录最大的时间,然后根据这个时间去业务系统取大于这个时间所有的记录。利用业务系统的时间戳,一般情况下,业务系统没有或者部分有时间戳。

    二、数据的清洗转换

  一般情况下,数据仓库分为ODS、DW两部分。通常的做法是从业务系统到ODS做清洗,将脏数据和不完整数据过滤掉,在从ODS到DW的过程中转换,进行一些业务规则的计算和聚合。

    1、数据清洗

  数据清洗的任务是过滤那些不符合要求的数据,将过滤的结果交给业务主管部门,确认是否过滤掉还是由业务单位修正之后再进行抽取。不符合要求的数据主要是有不完整的数据、错误的数据、重复的数据三大类。

  (1)不完整的数据:这一类数据主要是一些应该有的信息缺失,如供应商的名称、分公司的名称、客户的区域信息缺失、业务系统中主表与明细表不能匹配等。对于这一类数据过滤出来,按缺失的内容分别写入不同Excel文件向客户提交,要求在规定的时间内补全。补全后才写入数据仓库。

  (2)错误的数据:这一类错误产生的原因是业务系统不够健全,在接收输入后没有进行判断直接写入后台数据库造成的,比如数值数据输成全角数字字符、字符串数据后面有一个回车操作、日期格式不正确、日期越界等。这一类数据也要分类,对于类似于全角字符、数据前后有不可见字符的问题,只能通过写SQL语句的方式找出来,然后要求客户在业务系统修正之后抽取。日期格式不正确的或者是日期越界的这一类错误会导致ETL运行失败,这一类错误需要去业务系统数据库用SQL的方式挑出来,交给业务主管部门要求限期修正,修正之后再抽取。

  (3)重复的数据:对于这一类数据——特别是维表中会出现这种情况——将重复数据记录的所有字段导出来,让客户确认并整理。

  数据清洗是一个反复的过程,不可能在几天内完成,只有不断的发现问题,解决问题。对于是否过滤,是否修正一般要求客户确认,对于过滤掉的数据,写入Excel文件或者将过滤数据写入数据表,在ETL开发的初期可以每天向业务单位发送过滤数据的邮件,促使他们尽快地修正错误,同时也可以做为将来验证数据的依据。数据清洗需要注意的是不要将有用的数据过滤掉,对于每个过滤规则认真进行验证,并要用户确认。

  2、数据转换

  数据转换的任务主要进行不一致的数据转换、数据粒度的转换,以及一些商务规则的计算。

  (1)不一致数据转换:这个过程是一个整合的过程,将不同业务系统的相同类型的数据统一,比如同一个供应商在结算系统的编码是XX0001,而在CRM中编码是YY0001,这样在抽取过来之后统一转换成一个编码。

  (2)数据粒度的转换:业务系统一般存储非常明细的数据,而数据仓库中数据是用来分析的,不需要非常明细的数据。一般情况下,会将业务系统数据按照数据仓库粒度进行聚合。

  (3)商务规则的计算:不同的企业有不同的业务规则、不同的数据指标,这些指标有的时候不是简单的加加减减就能完成,这个时候需要在ETL中将这些数据指标计算好了之后存储在数据仓库中,以供分析使用。

    三、ETL日志、警告发送

  1、ETL日志

  ETL日志分为三类。一类是执行过程日志,这一部分日志是在ETL执行过程中每执行一步的记录,记录每次运行每一步骤的起始时间,影响了多少行数据,流水账形式。一类是错误日志,当某个模块出错的时候写错误日志,记录每次出错的时间、出错的模块以及出错的信息等。第三类日志是总体日志,只记录ETL开始时间、结束时间是否成功信息。如果使用ETL工具,ETL工具会自动产生一些日志,这一类日志也可以作为ETL日志的一部分。记录日志的目的是随时可以知道ETL运行情况,如果出错了,可以知道哪里出错。

  2、警告发送

  如果ETL出错了,不仅要形成ETL出错日志,而且要向系统管理员发送警告。发送警告的方式多种,一般常用的就是给系统管理员发送邮件,并附上出错的信息,方便管理员排查错误。

  ETL是BI项目的关键部分,也是一个长期的过程,只有不断的发现问题并解决问题,才能使ETL运行效率更高,为BI项目后期开发提供准确的数据。

分享到:
评论

相关推荐

    BI项目中ETL设计与思考.docx

    BI 项目中 ETL 设计与思考 ETL(Extract、Transform、Load)是业务智能(BI)项目中一个重要的环节,它是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程,目的是将企业中的分散、零乱、标准不统一的...

    BI ETL ELT Kettle 基础知识中文文档汇总

    BI项目中ETL设计与思考.pdf CTL工具.pdf ETL-开发规范.pdf ETL_--_事实表.pdf ETL_文档.pdf ETL_架构.pdf ETL_调度系统技术方案说明书_V1.0.pdf ETL中的数据清洗设计.pdf ETL交流.pdf ETL培训.ppt ETL...

    很全的ETL学习资料

    BI项目中ETL设计与思考.docx DataStage(ETL)技术总结.docx ETL增量抽取.docx ETL增量抽取方式.docx ETL工具点评.docx ETL常见性能瓶颈.docx ETL构建企业级数据仓库五步法.docx ETL高级教程.docx 三大主流ETL工具选型...

    ETL学习资料

    2.BI项目中ETL设计与思考 3.DataStage(ETL)技术总结 4.ETL常见性能瓶颈 5.ETL高级教程 6.ETL工具点评 7.ETL构建企业级数据仓库五步法 8.ETL增量抽取 9.ETL增量抽取方式 10.三大主流ETL工具选型 11.商务智能(BI)的...

    数据仓库概念汇总,来自IT-Pub

    在BI项目中,ETL的设计与思考非常重要,这关系到整个系统的稳定性和性能。 ### 构建ETL流程的低成本方案 在实际项目中,经常会遇到一些企业级的数据仓库软件许可证费用昂贵的情况。然而,一些简单的ETL流程完全...

    大数据平台 MaxCompute 公有云多租户设计-5-1 数据+金融营销的思考与应用.zip

    通过阅读“大数据平台 MaxCompute 公有云多租户设计-5-1 数据+金融营销的思考与应用.pdf”这份资料,我们可以深入了解MaxCompute如何在金融营销领域发挥作用,同时掌握大数据平台在多租户环境下的设计原理和技术实践...

    itpub电子期刊第十五期

    BI 项目中的 ETL 设计与思考 **关键点**: - ETL 是 BI 项目的核心组成部分。 - 不断优化 ETL 过程,提高数据质量和处理速度。 - 为后续的 BI 开发提供可靠的数据支持。 ### 7. 商业智能 (BI) 系统建设新思路 **...

    现代数据栈与数据建模思考共24页.pdf.zip

    本资料"现代数据栈与数据建模思考共24页.pdf.zip"深入探讨了这两个主题,下面将对它们进行详细的解析。 首先,现代数据栈通常包括以下几个核心组件: 1. **数据源**:这是数据的起点,可以是各种在线和离线系统,...

    阿里巴巴面试资料

    ETL与BI** - 询问对应聘者对ETL(数据提取、转换和加载)和BI(商业智能)的理解。 - 评估应聘者对于数据处理和分析领域的专业知识。 **9. 工具使用** - 如果使用过DATASTAGE、INFORMATICA等ETL工具,可能会被问及。 -...

    数据库架构师岗位说明书.pdf

    数据库架构师是技术部门中的关键角色,主要负责设计、管理和优化公司的数据库系统,确保数据安全、高效地运行。这个岗位属于技术部的专业职位,需要具备深厚的计算机科学背景和丰富的数据库管理经验。 职责与工作...

Global site tag (gtag.js) - Google Analytics