`

缓存算法

    博客分类:
  • java
阅读更多
来源:http://www.zavakid.com/27
来源:http://www.jtraining.com/component/content/article/35-jtraining-blog/137.html
来源:http://hi.baidu.com/hxzon/blog/item/87a26806468df469020881b2.html
缓存算法

没有人能说清哪种缓存算法由于其他的缓存算法。(以下的几种缓存算法,有的我也理解不好,如果感兴趣,你可以Google一下  )
Least Frequently Used(LFU):

大家好,我是 LFU,我会计算为每个缓存对象计算他们被使用的频率。我会把最不常用的缓存对象踢走。
Least Recently User(LRU):

我是LRU缓存算法,我把最近最少使用的缓存对象给踢走。

我总是需要去了解在什么时候,用了哪个缓存对象。如果有人想要了解我为什么总能把最近最少使用的对象踢掉,是非常困难的。

浏览器就是使用了我(LRU)作为缓存算法。新的对象会被放在缓存的顶部,当缓存达到了容量极限,我会把底部的对象踢走,而技巧就是:我会把最新被访问的缓存对象,放到缓存池的顶部。

所以,经常被读取的缓存对象就会一直呆在缓存池中。有两种方法可以实现我,array 或者是 linked list。

我的速度很快,我也可以被数据访问模式适配。我有一个大家庭,他们都可以完善我,甚至做的比我更好(我确实有时会嫉妒,但是没关系)。我家庭的一些成员包括LRU2 和 2Q,他们就是为了完善 LRU 而存在的。
Least Recently Used 2(LRU2):

我是 Least Recently Used 2,有人叫我最近最少使用twice,我更喜欢这个叫法。我会把被两次访问过的对象放入缓存池,当缓存池满了之后,我会把有两次最少使用的缓存对象踢走。因为需要跟踪对象2次,访问负载就会随着缓存池的增加而增加。如果把我用在大容量的缓存池中,就会有问题。另外,我还需要跟踪那么不在缓存的对象,因为他们还没有被第二次读取。我比LRU好,而且是 adoptive to access 模式 。
Two Queues(2Q):

我是 Two Queues;我把被访问的数据放到LRU的缓存中,如果这个对象再一次被访问,我就把他转移到第二个、更大的LRU缓存。

我踢走缓存对象是为了保持第一个缓存池是第二个缓存池的1/3。当缓存的访问负载是固定的时候,把 LRU 换成 LRU2,就比增加缓存的容量更好。这种机制使得我比 LRU2 更好,我也是 LRU 家族中的一员,而且是 adoptive to access 模式 。
Adaptive Replacement Cache(ARC):

我是 ARC,有人说我是介于 LRU 和 LFU 之间,为了提高效果,我是由2个 LRU 组成,第一个,也就是 L1,包含的条目是最近只被使用过一次的,而第二个 LRU,也就是 L2,包含的是最近被使用过两次的条目。因此, L1 放的是新的对象,而 L2 放的是常用的对象。所以,别人才会认为我是介于 LRU 和 LFU 之间的,不过没关系,我不介意。

我被认为是性能最好的缓存算法之一,能够自调,并且是低负载的。我也保存着历史对象,这样,我就可以记住那些被移除的对象,同时,也让我可以看到被移除的对象是否可以留下,取而代之的是踢走别的对象。我的记忆力很差,但是我很快,适用性也强。
Most Recently Used(MRU):

我是 MRU,和 LRU 是对应的。我会移除最近最多被使用的对象,你一定会问我为什么。好吧,让我告诉你,当一次访问过来的时候,有些事情是无法预测的,并且在缓存系统中找出最少最近使用的对象是一项时间复杂度非常高的运算,这就是为什么我是最好的选择。

我是数据库内存缓存中是多么的常见!每当一次缓存记录的使用,我会把它放到栈的顶端。当栈满了的时候,你猜怎么着?我会把栈顶的对象给换成新进来的对象!
First in First out(FIFO):

我是先进先出,我是一个低负载的算法,并且对缓存对象的管理要求不高。我通过一个队列去跟踪所有的缓存对象,最近最常用的缓存对象放在后面,而更早的缓存对象放在前面,当缓存容量满时,排在前面的缓存对象会被踢走,然后把新的缓存对象加进去。我很快,但是我并不适用。
Second Chance:

大家好,我是 second chance,我是通过FIFO修改而来的,被大家叫做 second chance 缓存算法,我比 FIFO 好的地方是我改善了 FIFO 的成本。我是 FIFO 一样也是在观察队列的前端,但是很FIFO的立刻踢出不同,我会检查即将要被踢出的对象有没有之前被使用过的标志(1一个bit表示),没有没有被使用过,我就把他踢出;否则,我会把这个标志位清除,然后把这个缓存对象当做新增缓存对象加入队列。你可以想象就这就像一个环队列。当我再一次在队头碰到这个对象时,由于他已经没有这个标志位了,所以我立刻就把他踢开了。我在速度上比FIFO快。
CLock

我是Clock,一个更好的FIFO,也比 second chance更好。因为我不会像second chance那样把有标志的缓存对象放到队列的尾部,但是也可以达到second chance的效果。

我持有一个装有缓存对象的环形列表,头指针指向列表中最老的缓存对象。当缓存miss发生并且没有新的缓存空间时,我会问问指针指向的缓存对象的标志位去决定我应该怎么做。如果标志是0,我会直接用新的缓存对象替代这个缓存对象;如果标志位是1,我会把头指针递增,然后重复这个过程,知道新的缓存对象能够被放入。我比second chance更快。
Simple time-based:

我是 simple time-based 缓存算法,我通过绝对的时间周期去失效那些缓存对象。对于新增的对象,我会保存特定的时间。我很快,但是我并不适用。
Extended time-based expiration:

我是 extended time-based expiration 缓存算法,我是通过相对时间去失效缓存对象的;对于新增的缓存对象,我会保存特定的时间,比如是每5分钟,每天的12点。
Sliding time-based expiration:

我是 sliding time-based expiration,与前面不同的是,被我管理的缓存对象的生命起点是在这个缓存的最后被访问时间算起的。我很快,但是我也不太适用。

好了!听了那么多缓存算法的自我介绍,其他的缓存算法还考虑到了下面几点:

    成本。如果缓存对象有不同的成本,应该把那些难以获得的对象保存下来。
    容量。如果缓存对象有不同的大小,应该把那些大的缓存对象清除,这样就可以让更多的小缓存对象进来了。
    时间。一些缓存还保存着缓存的过期时间。电脑会失效他们,因为他们已经过期了。

根据缓存对象的大小而不管其他的缓存算法可能是有必要的。
Random Cache:

我是随机缓存,我随意的替换缓存实体,没人敢抱怨。你可以说那个被替换的实体很倒霉。通过这些行为,我随意的去处缓存实体。我比FIFO机制好,在某些情况下,我甚至比 LRU 好,但是,通常LRU都会比我好。
看看缓存元素(缓存实体)

public class CacheElement {

private Object objectValue;

private Object objectKey;

private int index;

private int hitCount;

// getters and setters

}

这个缓存实体拥有缓存的key和value,这个实体的数据结构会被以下所有缓存算法用到。
缓存算法的公用代码

public final synchronized void addElement(Object key,Object value) {

int index;
Object obj;

// get the entry from the table
obj = table.get(key);

// If we have the entry already in our table
then get it and replace only its value.
if (obj != null) {
CacheElement element;

element = (CacheElement) obj;
element.setObjectValue(value);
element.setObjectKey(key);

return;
}
}

上面的代码会被所有的缓存算法实现用到。这段代码是用来检查缓存元素是否在缓存中了,如果是,我们就替换它,但是如果我们找不到这个key对应的缓存,我们会怎么做呢?那我们就来深入的看看会发生什么吧!
现场访问

今天的专题很特殊,因为我们有特殊的客人,事实上他们是我们想要听的与会者,但是首先,先介绍一下我们的客人:Random Cache,FIFO Cache。让我们从 Random Cache开始。
看看随机缓存的实现

public final synchronized void addElement(Object key,Object value) {

int index;
Object obj;

obj = table.get(key);

if (obj != null) {
CacheElement element;

// Just replace the value.
element = (CacheElement) obj;
element.setObjectValue(value);
element.setObjectKey(key);

return;
}

// If we haven't
filled the cache yet, put it at the end.
if (!isFull()) {
index = numEntries;
++numEntries;
} else {
// Otherwise, replace a random entry.
index = (int) (cache.length * random.nextFloat());
table.remove(cache[index].getObjectKey());
}

cache[index].setObjectValue(value);
cache[index].setObjectKey(key);
table.put(key, cache[index]);
}

看看FIFO缓存算法的实现

public final synchronized void addElement(Object
key,Object value) {
int index;
Object obj;

obj = table.get(key);

if (obj != null) {
CacheElement element;

// Just replace the value.
element = (CacheElement) obj;
element.setObjectValue(value);
element.setObjectKey(key);

return;
}

// If we haven't filled the cache yet, put it at the end.
if (!isFull()) {
index = numEntries;
++numEntries;
} else {
// Otherwise, replace the current pointer, entry with the new one
index = current;
// in order to make Circular FIFO
if (++current >= cache.length)
  current = 0;

table.remove(cache[index].getObjectKey());
}

cache[index].setObjectValue(value);
cache[index].setObjectKey(key);
table.put(key, cache[index]);
}

看看LFU缓存算法的实现

public synchronized Object getElement(Object key) {

Object obj;

obj = table.get(key);

if (obj != null) {
CacheElement element = (CacheElement) obj;
element.setHitCount(element.getHitCount() + 1);
return element.getObjectValue();
}
return null;

}

public final synchronized void addElement(Object key, Object value) {

Object obj;

obj = table.get(key);

if (obj != null) {
CacheElement element;

// Just replace the value.
element = (CacheElement) obj;
element.setObjectValue(value);
element.setObjectKey(key);

return;
}

if (!isFull()) {

index = numEntries;
++numEntries;
} else {
CacheElement element = removeLfuElement();
index = element.getIndex();
table.remove(element.getObjectKey());
}

cache[index].setObjectValue(value);
cache[index].setObjectKey(key);
cache[index].setIndex(index);
table.put(key, cache[index]);
}

public CacheElement removeLfuElement() {

CacheElement[] elements = getElementsFromTable();
CacheElement leastElement = leastHit(elements);
return leastElement;
}

public static CacheElement leastHit(CacheElement[] elements) {

CacheElement lowestElement = null;
for (int i = 0; i < elements.length; i++) {
  CacheElement element = elements[i];
  if (lowestElement == null) {
   lowestElement = element;

  } else {
   if (element.getHitCount() < lowestElement.getHitCount()) {
    lowestElement = element;
   }
  }
}
return lowestElement;
}

最重点的代码,就应该是 leastHit 这个方法,这段代码就是把 hitCount 最低的元素找出来,然后删除,给新进的缓存元素留位置。
看看LRU缓存算法实现

private void moveToFront(int index) {
int nextIndex, prevIndex;

if(head != index) {
nextIndex = next[index];
prevIndex = prev[index];

// Only the head has a prev entry that is an invalid index so
// we don't check.
next[prevIndex] = nextIndex;

// Make sure index is valid. If it isn't, we're at the tail
// and don't set prev[next].
if(nextIndex >= 0)
  prev[nextIndex] = prevIndex;
else
  tail = prevIndex;

prev[index] = -1;
next[index] = head;
prev[head] = index;
head = index;
}
}

public final synchronized void addElement(Object key, Object value) {
int index;
Object obj;

obj = table.get(key);

if(obj != null) {
CacheElement entry;

// Just replace the value, but move it to the front.
entry = (CacheElement)obj;
entry.setObjectValue(value);
entry.setObjectKey(key);

moveToFront(entry.getIndex());

return;
}

// If we haven't filled the cache yet, place in next available spot
// and move to front.
if(!isFull()) {
if(_numEntries > 0) {
  prev[_numEntries] = tail;
  next[_numEntries] = -1;
  moveToFront(numEntries);
}
++numEntries;
} else {
// We replace the tail of the list.
table.remove(cache[tail].getObjectKey());
moveToFront(tail);
}

cache[head].setObjectValue(value);
cache[head].setObjectKey(key);
table.put(key, cache[head]);
}

这段代码的逻辑如 LRU算法 的描述一样,把再次用到的缓存提取到最前面,而每次删除的都是最后面的元素。
结论

我们已经看到 LFU缓存算法 和 LRU缓存算法的实现方式,至于如何实现,采用数组还是 LinkedHashMap,都由你决定,不够我一般是小的缓存容量用数组,大的用LinkedHashMap。




















分享到:
评论

相关推荐

    2025最新空调与制冷作业(运行操作)考试题库及答案.docx

    2025最新空调与制冷作业(运行操作)考试题库及答案.docx

    无监督视频对象分割领域的跨模态与帧间注意力机制研究及其应用

    内容概要:本文提出了一种新的无监督视频对象分割(unsupervised VOS)方法——双原型注意力机制(Dual Prototype Attention),即IMA(跨模态注意模块)和IFA(帧间注意模块)。这些机制分别解决了现有多模态融合和时间聚集方法中存在的鲁棒性和计算效率等问题,显著提高了在多个公开基准数据集上的表现。此外,论文还探讨了原型嵌入对性能的影响并对其进行了验证。 适合人群:对视频处理特别是无监督视频对象分割领域感兴趣的计算机视觉研究员和技术开发者。 使用场景及目标:适用于各种需要进行高质量自动图像或视频内容分析的应用环境,如智能监控、增强现实、自动驾驶等领域。具体的目标是提高模型识别最突出物体时的精度以及稳定性,即使遇到遮挡或者复杂背景也能有效运作。 阅读建议:本篇文献提供了详尽的技术细节和支持性实验结果来展示所提出的DPA方法优越之处。因此,在理解和评估该研究成果的基础上可以深入了解如何利用注意力机制提升深度学习模型的效果,尤其是对于涉及时间和空间维度的数据处理任务非常有价值。

    Gartner发布2025年网络治理、风险与合规战略路线图

    新型网络风险和合规义务,日益成为网络治理、风险与合规实践面临的问题。安全和风险管理领导者可以参考本文,实现从被动、专注于合规的方法到主动、进一步自动化方法的转型。 主要发现 不断变化的监管环境和不断扩大的攻击面,使企业机构难以实现网络治理、风险与合规(GRC)与其整体风险管理战略的协调,因此必须推动GRC进行战略性转变。然而,许多安全和风险管理(SRM)领导者难以适应这些变化。 重心在满足监管要求的话,通常会导致被动的网络风险管理和评估方式。因此,网络安全团队与业务部门之间的接触和协作通常较低。 许多网络GRC管理流程缺乏充分且相关的技术自动化,导致资源紧张和控制测试疲劳。

    基于java+ssm+mysql的数据库系统原理课程平台 源码+数据库+论文(高分毕设项目).zip

    项目已获导师指导并通过的高分毕业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 项目都经过严格调试,确保可以运行!可以放心下载 技术组成 语言:java 开发环境:idea 数据库:MySql8.0 部署环境:Tomcat(建议用 7.x 或者 8.x 版本),maven 数据库工具:navicat

    基于FATFS系统的STM32F407 SD卡升级Bootloader程序:自动检测与升级流程,stm32f407 SD卡升级 bootloader程序 基于sdio fatfs系统的stm32 b

    基于FATFS系统的STM32F407 SD卡升级Bootloader程序:自动检测与升级流程,stm32f407 SD卡升级 bootloader程序 基于sdio fatfs系统的stm32 bootloader程序 功能简介: 本程序使用fatfs系统读取bin文件。 开机后会自动检测sd卡,检测到sd卡后,再读取固定名称的bin文件,之后会对bin文件进行首包校验,判断该升级包的起始地址是否正确,正确的话,就循环读取bin文件并写入到flash中。 完成升级。 详细流程请看流程图 ,stm32f407; SD卡升级; bootloader程序; fatfs系统读取bin文件; 检测SD卡; 首包校验; 循环写入flash。,STM32F407 SD卡升级Bootloader程序:基于SDIO FATFS系统实现自动升级功能

    激光设备上位机源码解析:基于欧姆龙NJplc通讯协议与多种激光器控制实现,激光设备上位机源码+基于欧姆龙NJplc上位机+各种常见激光器通讯控制 ,核心关键词:激光设备上位机源码; 欧姆龙NJpl

    激光设备上位机源码解析:基于欧姆龙NJplc通讯协议与多种激光器控制实现,激光设备上位机源码+基于欧姆龙NJplc上位机+各种常见激光器通讯控制。 ,核心关键词:激光设备上位机源码; 欧姆龙NJplc上位机; 常见激光器通讯控制; PLC控制。,"欧姆龙NJplc驱动的激光设备上位机控制源码:通用激光器通讯管理"

    高效数字电源方案:图腾柱无桥pfc技术,两相交错设计,5G一体化电源批量出货,宽电压输入与高效输出,功率覆盖至kW级别,高效数字电源方案,图腾柱无桥pfc,两相交错,5g一体化电电源上已批量出,输入1

    高效数字电源方案:图腾柱无桥pfc技术,两相交错设计,5G一体化电源批量出货,宽电压输入与高效输出,功率覆盖至kW级别,高效数字电源方案,图腾柱无桥pfc,两相交错,5g一体化电电源上已批量出,输入175-265V,输出42-58V;输出效率97%,2kW 3kW都有 ,高效数字电源方案; 图腾柱无桥pfc; 两相交错; 5g一体化电电源; 批量出货; 宽输入电压范围; 高输出效率; 2kW和3kW功率。,"高效图腾柱无桥PFC电源方案,两相交错5G电平已大批量生产,宽输入范围输出高效率"

    COMSOL三维采空区通风条件下的氧气与瓦斯浓度分布研究,comsol三维采空区通风条件下,氧气,瓦斯浓度分布 ,核心关键词:comsol; 三维采空区; 通风条件; 氧气浓度分布; 瓦斯浓度分布

    COMSOL三维采空区通风条件下的氧气与瓦斯浓度分布研究,comsol三维采空区通风条件下,氧气,瓦斯浓度分布。 ,核心关键词:comsol; 三维采空区; 通风条件; 氧气浓度分布; 瓦斯浓度分布;,"三维采空区通风模拟:氧气与瓦斯浓度分布研究"

    基于java+ssm+mysql的餐馆点餐系统 源码+数据库+论文(高分毕设项目).zip

    项目已获导师指导并通过的高分毕业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 项目都经过严格调试,确保可以运行!可以放心下载 技术组成 语言:java 开发环境:idea 数据库:MySql8.0 部署环境:Tomcat(建议用 7.x 或者 8.x 版本),maven 数据库工具:navicat

    Python自动化办公源码-07一键往Word文档的表格中填写数据

    Python自动化办公源码-07一键往Word文档的表格中填写数据

    2025最新初级保育员理论知识考试题库及答案.doc

    2025最新初级保育员理论知识考试题库及答案.doc

    基于Tent混沌映射改进的麻雀算法SSA优化BP神经网络(Tent-SSA-BP)回归预测MATLAB代码教程:电厂数据预测(含优化对比),基于Tent混沌映射改进的麻雀算法SSA优化BP神经网络(T

    基于Tent混沌映射改进的麻雀算法SSA优化BP神经网络(Tent-SSA-BP)回归预测MATLAB代码教程:电厂数据预测(含优化对比),基于Tent混沌映射改进的麻雀算法SSA优化BP神经网络(Tent-SSA-BP)回归预测MATLAB代码(有优化前后的对比) 代码注释清楚。 main为运行主程序,可以读取本地EXCEL数据。 很方便,容易上手。 (以电厂运行数据为例) 温馨提示:联系请考虑是否需要,程序代码,一经出,概不 。 ,Tent-SSA; BP神经网络; 回归预测; MATLAB代码; 优化对比; 代码注释; 主程序; EXCEL数据读取; 电厂运行数据。,基于Tent混沌映射与SSA优化的BP神经网络回归预测MATLAB代码(含前后对比及清晰注释)

    西门子1200 PLC轴运动控制程序模板-涵盖伺服控制、电缸、通讯及报警功能,适用于装路由器壳子的机器,具备电路图与触摸屏程序,供学习与借鉴 ,SIEMENS 西门子西门子1200plc轴运动控制程

    西门子1200 PLC轴运动控制程序模板——涵盖伺服控制、电缸、通讯及报警功能,适用于装路由器壳子的机器,具备电路图与触摸屏程序,供学习与借鉴。,SIEMENS 西门子西门子1200plc轴运动控制程序模板 介绍:此程序是之前给海康威视做的一台装路由器壳子的机器。 程序有以下: 1):调用轴控制块做的控制3个伺服, 2):1个电缸, 3):用PUT GET块与上下游plc通讯, 4):轴控制块 5):气缸报警块 6):完整的电路图 7):威纶通触摸屏程序 8):IO表 程序块已经在很多个项目上成熟应用,可以直接调用,对于做西门子1200轴控制等有很好的学习借鉴意义。 好好看一遍,有很大的提高作用。 ,SIEMENS; 1200plc; 轴运动控制; 程序模板; 伺服控制; 电缸控制; PLC通讯; 威纶通触摸屏程序; 电路图; IO表,西门子1200 PLC轴运动控制模板:海康威视项目成熟应用示例

    《2023年未来就业报告》:人工智能对未来就业市场的影响及应对措施

    内容概要:本文详细探讨了人工智能(AI)对就业市场的深远影响及其发展趋势。首先介绍了到2027年,44%的工人核心技能将受技术变革尤其是AI影响的事实,并提及自动化可能取代部分工作的现象。其次指出虽然某些职位面临风险,但也带来了全新的职业机遇与现有角色改进的可能性,关键在于人类要学会借助AI释放自身潜力并培养软实力,以适应快速发展的科技需求。再者,强调终身学习理念下企业和教育培训须革新教学手段与评估机制,以便紧跟AI进化速率,为个体和社会持续注入新动力。最后提到了教育机构应当加快调整步伐以匹配技术变革的速度,并利用AI实现个性化的教育,进而提升学习者的适应能力和解决问题的能力。 适用人群:政策制定者、企业管理层、在职人员及教育工作者,还有广大学生群体均能从中获得启示。 使用场景及目标:面向关注未来职场动向及教育发展方向的专业人士,提供前瞻性思考角度,助力各界积极规划职业生涯路径或调整教育资源分配策略。 其他说明:本文综合多位行业领袖的观点展开讨论,旨在唤起社会各界共同思考AI带来的变革及对策,而非单方面渲染危机感。

    谷歌 Adsense 合同(中文)

    谷歌 Adsense 在线服务条款,首次办理接收谷歌 Adsense 付款时需要提交的一份证明材料(合同/协议),需要提交中文版,已经翻译成中文了。

    Python自动化办公源码-14用Python按时间分割txt文件中的数据

    Python自动化办公源码-14用Python按时间分割txt文件中的数据

    Native SQLite Manager for Mac v1.29.2

    Native SQLite Manager for Mac是一款极简的SQLite数据库管理工具,专为Mac用户设计。它支持多种SQLite版本、SQLCipher加密和SQLite扩展,提供自动补全、语法高亮和SQL格式化功能。用户可以通过简洁直观的界面轻松创建、编辑、删除和备份数据库文件。软件还支持数据导入导出(如CSV、JSON、XML格式),方便数据迁移和备份。其多数据库管理功能允许同时打开多个数据库文件,提升工作效率。Native SQLite Manager适合开发者、数据分析师和学生使用,是高效管理SQLite数据库的理想选择。

    西门子SMART 200电机控制子程序V1.6:智能管理多达7个电机,灵活设置运行参数,故障自动切换备用电机,版本升级持续优化 ,西门子SMART 200 电机控制子程序V1.6,可生成库 可控制1

    西门子SMART 200电机控制子程序V1.6:智能管理多达7个电机,灵活设置运行参数,故障自动切换备用电机,版本升级持续优化。,西门子SMART 200 电机控制子程序V1.6,可生成库 可控制1-7个电机 可设置同时运行的最大电机数量 可设置每个电机是否使用 可设置电机轮时间,当系统单次运行时间>轮时间,停止运行时间最长的电机,上累计运行时间最短的电机 可设置电机启动间隔 每次启动累计运行时间最短的电机 当有电机故障时,立即停止该电机,如果有备用电机自动切备用电机 7个电机内,可自由设置备用电机个数,使用的电机总数-最大电机数量=备用电机个数 附版本升级记录: V1.1优化:当使能被关闭后自动关闭对应电机 V1.2优化:运行中改变同时使用电机数量有效 V1.3更改:open信号上升沿直接启动1个电机(跳过启动间隔),第二个电机启动间隔才有效 轮时间改为秒,当系统单次运行时间>轮时间,停止运行时间最长的电机,上累计运行时间最短的电机 V1.4优化 V1.5满足可以运行的电机数量>同时使用电机数量 时 轮才有效,不满足时,轮计时清零 V1.6 优化某些情况下,无法正确延时 ,核心关键词

    2012-2023年劳务外包数据(劳务派遣或灵活就业等)(全新整理)

    1、资源内容地址:https://blog.csdn.net/2301_79696294/article/details/144634118 2、数据特点:今年全新,手工精心整理,放心引用,数据来自权威,且标注《数据来源》,相对于其他人的控制变量数据准确很多,适合写论文做实证用 ,不会出现数据造假问题 3、适用对象:大学生,本科生,研究生小白可用,容易上手!!! 4、课程引用: 经济学,地理学,城市规划与城市研究,公共政策与管理,社会学,商业与管理

    面向能源互联网的云边协同技术研究.pdf

    面向能源互联网的云边协同技术研究.pdf

Global site tag (gtag.js) - Google Analytics