`

程序员基础 MySQL数据库开发必备常识

阅读更多

MySQL可以说是程序员应用最多的数据库,下面笔者为大家分享MySQL数据库开发当中的一些常识,存储引擎的选择,索引的设计及使用和大批量插入时SQL语句的优化。希望能对大家有帮助。

  存储引擎的选择

  声明:本文所针对的数据库版本都是MYSQL 5这里我主要针对两种存储引擎进行简单比较分别是MyISAM和InnoDB,首先比较下区别:

  1. MyISAM不支持事务,不支持外键,优点是访问速度高,批量插入速度快。假设大量的操作是select、insert,建议采用该存储引擎。但是在我的实际应用中,出现过批量插入过于频繁的时候,当数据量到达一定级别,出现表损坏的情况。

  2. InnoDB支持事务处理,但是相对于前者,处理效率低一些,并且其索引及数据也更占用磁盘空间。在存储一些关键数据,并需要对其进行事务操作的时候,我们可以选择innodb,当然,我认为他不应该是访问量太大的。

  索引的设计及使用

  没有索引的表是恐怖的,除非里头没多少数据,但是怎么设计索引是合理的?恐怕不是所有人都明白,这里简要分析下索引的设计及使用。

  1. 索引通常是设置where字句中的列,如果你设置select后的列,这是没有任何意义的。当然你需要对某列进行排序,order by后的列也是可以建成索引的。

  2. 使用唯一索引,主键就是最好的例子,假设你建的索引列,大量都是重复的,例如:性别,那么这样的索引并不会加快搜索速度。至于为什么,请大家自行了解索引的工作原理。

  3. 只要有可能,就要尽量限定索引的长度,例如索引列为 char(100),在其前10个字符大部分都是唯一的,请设置索引的长度为10,使用短索引可以加快查询速度,并节省硬盘空间。

  4. 索引的左前缀特性,联合索引实质上也是建立了多个的索引,那么是建立联合索引好还是分别建多个索引好呢?显然前者更好,利用左前缀特性,只要联合索引的最左的列被用到,那么索引都会被使用。

  5. 当然,最后要说的是,不要过度使用索引,索引越多,插入的速度越慢,尤其到数据量庞大时,同时,大量的索引将耗费很多硬盘空间,造成不必要的浪费。

  下面举几个列子来说明索引的使用:

  1.联合索引的左前缀

  先看索引结构:

以下是代码片段:
 mysql
> show index from user
  
+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+ 
  | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | 
  
+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+ 
  | user  |    0 | PRIMARY  |1 | user_id     | A   |     2 |     NULL | NULL   || BTREE|   | 
  
| user  |    1 | user     |1 | username    | A   |  NULL |     NULL | NULL   || BTREE|   | 
  
| user  |    1 | user     |2 | order | A   |  NULL |     NULL | NULL   || BTREE|   | 
  
| user  |    1 | user     |3 | email | A   |  NULL |     NULL | NULL   | YES  | BTREE|   | 
  
+-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+ 
  4 rows in set (0.00 sec)

  

user是联合索引的名称,包含3个列,分别是username,order,email。接下来执行以下sql,使用explain命令来分析下运行结果。
以下是代码片段:
 mysql
> explain select * from user where username='leehui'
  
+----+-------------+-------+------+---------------+------+---------+-------+------+--------+ 
  | id | select_type | table | type | possible_keys | key  | key_len | ref   | rows | Extra | 
  
+----+-------------+-------+------+---------------+------+---------+-------+------+--------+ 
  |  1 | SIMPLE| user  | ref  | user    | user | 152     | const |    1 | Using where | 
  
+----+-------------+-------+------+---------------+------+---------+-------+------+--------+ 
  1 row in set (0.00 sec) 
  mysql
> explain select * from user where pws='123'
  
+----+-------------+-------+------+---------------+------+---------+------+------+---------+ 
  | id | select_type | table | type | possible_keys | key  | key_len | ref  | rows | Extra | 
  
+----+-------------+-------+------+---------------+------+---------+------+------+---------+ 
  |  1 | SIMPLE| user  | ALL  | NULL    | NULL | NULL    | NULL |    2 | Using where | 
  
+----+-------------+-------+------+---------------+------+---------+------+------+---------+ 
  1 row in set (0.00 sec)

  在两句sql中,我们可以发现,第一个sql虽然没用上,全部的索引列,但由于使用到了最左端的列,所以,联合索引还是启用了,第二句没有使用到最左的列,所以索引没有使用。

 

2.关于like关键字

  对于使用like的查询,需要注意的是只有列的%不在第一个字符索引才可能被使用。以下分别展示了使用like的查询,第一个是索引被使用的,第二个是索引未被使用的。

以下是代码片段:
 mysql
> explain select * from user where username like'lee%'
  
+----+-------------+-------+-------+---------------+------+---------+------+------+---------+ 
  | id | select_type | table | type  | possible_keys | key  | key_len | ref  | rows | Extra | 
  
+----+-------------+-------+-------+---------------+------+---------+------+------+---------+ 
  |  1 | SIMPLE| user  | range | user    | user | 152     | NULL |    1 | Using where | 
  
+----+-------------+-------+-------+---------------+------+---------+------+------+---------+ 
  1 row in set (0.00 sec) 
  mysql
> explain select * from user where username like'%lee'
  
+----+-------------+-------+------+---------------+------+---------+------+------+----------+ 
  | id | select_type | table | type | possible_keys | key  | key_len | ref  | rows | Extra | 
  
+----+-------------+-------+------+---------------+------+---------+------+------+----------+ 
  |  1 | SIMPLE| user  | ALL  | NULL    | NULL | NULL    | NULL |    2 | Using where | 
  
+----+-------------+-------+------+---------------+------+---------+------+------+----------+ 
  1 row in set (0.00 sec)

   3. 查看索引使用情况

  使用以下命令:

 mysql> show status like 'Handler_read_key'
  
+------------------+-------+ 
  | Variable_name    | Value | 
  
+------------------+-------+ 
  | Handler_read_key | 0     | 
  
+------------------+-------+ 
  1 row in set (0.00 sec)

  如果索引正在工作,那么Handler_read_key 会很高,如果查询中出现Handler_read_rnd_next的值很高,则表明查询低效,索引的应用并不合理。

 

大批量插入时的SQL语句优化

  在大量插入时,尤其是并发插入时,mysql往往要承受更高的负载,使用mysql administortar的健康检查就可以发现,其avg的值相当高,在这种情况下,首先要做的是sql语句的优化,比较下面两个句子,后者的速度比前者要快得多。因为减少大量的连接。

  复制内容到剪贴板代码:

以下是代码片段:
 
insert into test values(aa,bb) 
  
insert into test values(cc,dd) 
  
insert into test values (aa),(bb),(cc),(dd)

  在我的一个实际应用中,由于需要经常有数百个并发的插入,我还采用了insert delayed into来取代insert into,前者与后者的区别是在执行插入语句时,数据保存在内存队列中,待数据库空闲时执行,但是会立即返回一个插入成功的信息。使用insert delayed into时需要注意:此时不能使用mysql_insert_id(),因为此时并没有真正插入。对特别重要的数据不宜采用该语句,避免数据以外丢失。

  其他杂谈

  1.mysql myisam 表超过4G无法访问的解决

  myisam引擎默认是支持4GB,innodb理论上可以到6TB,假设单张表容量超过4GB,可能导致表都无法访问了。可以通过以下命令增加表最大数据量:

以下是代码片段:
 mysql
> alter table user MAX_ROWS=1000000000 AVG_ROW_LENGTH=15000
  Query OK, 
2 rows affected (0.09 sec) 
  Records: 
2  Duplicates: 0  Warnings: 0

原文地址:http://hakering.iteye.com/blog/918833

               http://www.cnblogs.com/zzbbs/archive/2011/02/22/1961743.html

分享到:
评论
1 楼 褚晓娜(0511) 2011-02-24  
不错 谢谢收藏啦

相关推荐

    sblim-gather-provider-2.2.8-9.el7.x64-86.rpm.tar.gz

    1、文件内容:sblim-gather-provider-2.2.8-9.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/sblim-gather-provider-2.2.8-9.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊

    基于pringboot框架的图书进销存管理系统的设计与实现(Java项目编程实战+完整源码+毕设文档+sql文件+学习练手好项目).zip

    本图书进销存管理系统管理员功能有个人中心,用户管理,图书类型管理,进货订单管理,商品退货管理,批销订单管理,图书信息管理,客户信息管理,供应商管理,库存分析管理,收入金额管理,应收金额管理,我的收藏管理。 用户功能有个人中心,图书类型管理,进货订单管理,商品退货管理,批销订单管理,图书信息管理,客户信息管理,供应商管理,库存分析管理,收入金额管理,应收金额管理。因而具有一定的实用性。 本站是一个B/S模式系统,采用Spring Boot框架,MYSQL数据库设计开发,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得图书进销存管理系统管理工作系统化、规范化。本系统的使用使管理人员从繁重的工作中解脱出来,实现无纸化办公,能够有效的提高图书进销存管理系统管理效率。 关键词:图书进销存管理系统;Spring Boot框架;MYSQL数据库

    2024中国在人工智能领域的创新能力如何研究报告.pdf

    2024中国在人工智能领域的创新能力如何研究报告.pdf

    安全生产_人脸识别_移动目标跟踪_智能管控平台技术实现与应用_1741777778.zip

    人脸识别项目实战

    人脸识别_TF2_Facenet_训练预测应用仓库_1741778670.zip

    人脸识别项目实战

    安全人脸识别_对抗攻击_多模型集成_减少扰动_竞赛方案_Ne_1741779504.zip

    人脸识别项目实战

    Python实现基于CEEMDAN完全自适应噪声集合经验模态分解时间序列信号分解的详细项目实例(含完整的程序,GUI设计和代码详解)

    内容概要:本文档详细介绍了基于CEEMDAN(完全自适应噪声集合经验模态分解)的方法实现时间序列信号分解的具体项目。文中涵盖项目背景介绍、主要目标、面临的挑战及解决方案、技术创新点、应用领域等多方面内容。项目通过多阶段流程(数据准备、模型设计与构建、性能评估、UI设计),并融入多项关键技术手段(自适应噪声引入、并行计算、机器学习优化等)以提高非线性非平稳信号的分析质量。同时,该文档包含详细的模型架构描述和丰富的代码样例(Python代码),有助于开发者直接参考与复用。 适合人群:具有时间序列分析基础的科研工作者、高校教师与研究生,从事信号处理工作的工程技术人员,或致力于数据科学研究的从业人员。 使用场景及目标:此项目可供那些面临时间序列数据中噪声问题的人群使用,尤其适用于需从含有随机噪音的真实世界信号里提取有意义成分的研究者。具体场景包括但不限于金融市场趋势预测、设备故障预警、医疗健康监控以及环境质量变动跟踪等,旨在提供一种高效的信号分离和分析工具,辅助专业人士进行精准判断和支持决策。 其他说明:本文档不仅限于理论讲解和技术演示,更着眼于实际工程项目落地应用,强调软硬件资源配置、系统稳定性测试等方面的细节考量。通过完善的代码实现说明以及GUI界面设计指南,使读者能够全面理解整个项目的开发流程,同时也鼓励后续研究者基于已有成果继续创新拓展,探索更多的改进空间与发展机遇。此外,针对未来可能遇到的各种情况,提出了诸如模型自我调整、多模态数据融合等发展方向,为长期发展提供了思路指导。

    监护人,小孩和玩具数据集 4647张原始图片 监护人 食物 孩子 玩具 精确率可达85.4% pasical voc xml格式

    监护人,小孩和玩具数据集 4647张原始图片 监护人 食物 孩子 玩具 精确率可达85.4% pasical voc xml格式

    根据提供的内容可以构建以下_1741777949.zip

    人脸识别项目实战

    `计算机视觉_人脸识别_Python_OpenCV_树莓派毕业设计`.zip

    人脸识别项目实战

    智慧生产企业园区解决方案PPT(54页).pptx

    在智慧园区建设的浪潮中,一个集高效、安全、便捷于一体的综合解决方案正逐步成为现代园区管理的标配。这一方案旨在解决传统园区面临的智能化水平低、信息孤岛、管理手段落后等痛点,通过信息化平台与智能硬件的深度融合,为园区带来前所未有的变革。 首先,智慧园区综合解决方案以提升园区整体智能化水平为核心,打破了信息孤岛现象。通过构建统一的智能运营中心(IOC),采用1+N模式,即一个智能运营中心集成多个应用系统,实现了园区内各系统的互联互通与数据共享。IOC运营中心如同园区的“智慧大脑”,利用大数据可视化技术,将园区安防、机电设备运行、车辆通行、人员流动、能源能耗等关键信息实时呈现在拼接巨屏上,管理者可直观掌握园区运行状态,实现科学决策。这种“万物互联”的能力不仅消除了系统间的壁垒,还大幅提升了管理效率,让园区管理更加精细化、智能化。 更令人兴奋的是,该方案融入了诸多前沿科技,让智慧园区充满了未来感。例如,利用AI视频分析技术,智慧园区实现了对人脸、车辆、行为的智能识别与追踪,不仅极大提升了安防水平,还能为园区提供精准的人流分析、车辆管理等增值服务。同时,无人机巡查、巡逻机器人等智能设备的加入,让园区安全无死角,管理更轻松。特别是巡逻机器人,不仅能进行360度地面全天候巡检,还能自主绕障、充电,甚至具备火灾预警、空气质量检测等环境感知能力,成为了园区管理的得力助手。此外,通过构建高精度数字孪生系统,将园区现实场景与数字世界完美融合,管理者可借助VR/AR技术进行远程巡检、设备维护等操作,仿佛置身于一个虚拟与现实交织的智慧世界。 最值得关注的是,智慧园区综合解决方案还带来了显著的经济与社会效益。通过优化园区管理流程,实现降本增效。例如,智能库存管理、及时响应采购需求等举措,大幅减少了库存积压与浪费;而设备自动化与远程监控则降低了维修与人力成本。同时,借助大数据分析技术,园区可精准把握产业趋势,优化招商策略,提高入驻企业满意度与营收水平。此外,智慧园区的低碳节能设计,通过能源分析与精细化管理,实现了能耗的显著降低,为园区可持续发展奠定了坚实基础。总之,这一综合解决方案不仅让园区管理变得更加智慧、高效,更为入驻企业与员工带来了更加舒适、便捷的工作与生活环境,是未来园区建设的必然趋势。

    第八届全国大学生创新创业年会-创新创业展示项目集

    本届年会的主题是“青春梦想创新创业”。通过学术论文报告、创新创业项目展示、创业项目推介、工作研讨、联谊活动、大会报告等活动,全面展示大学生最新的创新创业成果。年会共收到491所高校推荐的学术论文756篇、创新创业展示项目721项、创业推介项目156项,合计1633项,为历届年会数量最高。经过36所“985”高校相关学科专家的初评以及国家级大学生创新创业训练计划专家组的复选,最终遴选出可参加本次年会的学术论文180篇,创新创业展示项目150个,创业推介项目45项,共计375项,涉及30个省市的236所高校。年会还收到了来自澳门特别行政区、俄罗斯的13项学术论文及参展项目。这些材料集中反映了各高校最新的创新创业教育成果,也直接体现了当代大学生的创新思维和实践能力。

    人脸识别_实时_ArcFace_多路识别技术_JavaScr_1741771263.zip

    人脸识别项目实战

    6ES7215-1AG40-0XB0-V04.04.01固件4.5

    6ES7215-1AG40-0XB0_V04.04.01固件4.5

    在无人机上部署SchurVins的yaml配置文件

    在无人机上部署SchurVins的yaml配置文件

    uniapp实战商城类app和小程序源码​​​​​​.rar

    uniapp实战商城类app和小程序源码,包含后端API源码和交互完整源码。

    基于MobileNet轻量级网络实现的常见30多种食物分类

    基于MobileNet轻量级网络实现的常见30多种食物分类,包含数据集、训练脚本、验证脚本、推理脚本等等。 数据集总共20k左右,推理的形式是本地的网页推理

    2024年央国企RPA市场研究报.pdf

    2024年央国企RPA市场研究报.pdf

    VSCodeSetup-x64-1.98.0.rar

    VSCodeSetup-x64-1.98.0.rar vscode是一种简化且高效的代码编辑器,同时支持诸如调试,任务执行和版本管理之类的开发操作。它的目标是提供一种快速的编码编译调试工具。然后将其余部分留给IDE。vscode集成了所有一款现代编辑器所应该具备的特性,包括语法高亮、可定制的热键绑定、括号匹配、以及代码片段收集等。 Visual Studio Code(简称VSCode)是Microsoft开发的代码编辑器,它支持Windows,Linux和macOS等操作系统以及开源代码。它支持测试,并具有内置的Git版本控制功能以及开发环境功能,例如代码完成(类似于IntelliSense),代码段和代码重构等。编辑器支持用户定制的配置,例如仍在编辑器中时,可以更改各种属性和参数,例如主题颜色,键盘快捷键等,内置的扩展程序管理功能。

    日用品玻璃行业数字化转型:生产管理痛点与工业互联网平台解决方案

    内容概要:本文介绍了日用品玻璃行业的数字化解决方案,针对玻璃制品从原料制备、熔融到成型及深加工等一系列生产过程进行了详细的梳理。文中指出玻璃日用品制造业面临设备不停止运转造成的成本居高不下、频繁的小批量多款式订单切换带来的转产效率低下、以及在成型阶段的质量控制难度较大等严峻的问题,即'一高两低'的问题,并提出构建工业互联网平台,通过采用工业大数据平台等手段来克服现有挑战,达成生产全流程的数据贯通与优化。 适用人群:日用品玻璃企业的高级管理层和技术团队,负责生产流程改进、IT基础设施建设以及智能制造转型的专业人士。 使用场景及目标:该方案旨在帮助企业提升生产效率,增强产品品质,降低成本;具体应用场景涵盖生产设备状态的实时监测、故障预警、预防性维护、生产过程自动化调节等,进而实现企业数字化转型,提高市场响应速度和服务质量。 其他说明:本文提到的具体技术和方法包括物联网(IoT)技术、边缘计算、云计算平台建设和利用,还有通过机器学习和大数据分析技术对生产工艺进行深度理解和优化等。

Global site tag (gtag.js) - Google Analytics