public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = 8683452581122892189L; /** * 默认容量为10 */ private static final int DEFAULT_CAPACITY = 10; /** * 空的数组 */ private static final Object[] EMPTY_ELEMENTDATA = {}; /** * Shared empty array instance used for default sized empty instances. We * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when * first element is added. */ private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; /** * 用于存储数据的数组,创建ArrayList的时候被初始化 */ transient Object[] elementData; // non-private to simplify nested class access /** *元素的数量(不是elementData的长度) */ private int size; /** *指定容量的构造方法 ** 如果确定列表长度,可以使用此方法来创建列表,省去了扩容的消耗 ** 长度小于10的情况,也可以使用此方法来创建列表 节省空间 */ public ArrayList(int initialCapacity) { /** * initialCapacity大于0时,创建initialCapacity长度的数组 */ if (initialCapacity > 0) { this.elementData = new Object[initialCapacity]; } //initialCapacity为0时,就使用空数组EMPTY_ELEMENTDATA else if (initialCapacity == 0) { this.elementData = EMPTY_ELEMENTDATA; } //initialCapacity小于0时抛出异常 else { throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); } } /** * 默认构造器:创建一个空数组 */ public ArrayList() { this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA; } /** * 初始化一个ArrayList,包含c集合的所有元素 */ public ArrayList(Collection<? extends E> c) { //调用Collection的toArray返回一个数组 elementData = c.toArray(); if ((size = elementData.length) != 0) { //toArray返回的可能不是Object[]类型 /**以下情况返回的是String类型 * String[] ss = new String[10]; * List l = Arrays.asList(ss); * System.out.println(l.toArray()); */ if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, size, Object[].class); } else { // 如果size为0,elementData为空数组 this.elementData = EMPTY_ELEMENTDATA; } } /** * 清除elementData中空余的空间(elementData的长度可能大于size) */ public void trimToSize() { modCount++; /** * 如果size小于elementData的长度,就清除空闲空间 */ if (size < elementData.length) { elementData = (size == 0) ? EMPTY_ELEMENTDATA //重新生成一个size长度的数组,并将elementData中的元素拷贝进来 : Arrays.copyOf(elementData, size); } } /** * 确保容量大小(共外部调用) */ public void ensureCapacity(int minCapacity) { int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) /** * 如果elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA说明最小容量为minCapacity */ ? 0 /** * 如果elementData= DEFAULTCAPACITY_EMPTY_ELEMENTDATA需要扩展,默认初始化长度为10 */ : DEFAULT_CAPACITY; if (minCapacity > minExpand) { ensureExplicitCapacity(minCapacity); } } /** * 确保容量大小(内部调用) */ private void ensureCapacityInternal(int minCapacity) { if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) { //最小容量为DEFAULT_CAPACITY 10 minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity); } ensureExplicitCapacity(minCapacity); } private void ensureExplicitCapacity(int minCapacity) { modCount++; // minCapacity大于elementData.length就扩展 if (minCapacity - elementData.length > 0) grow(minCapacity); } /** * The maximum size of array to allocate. * Some VMs reserve some header words in an array. * Attempts to allocate larger arrays may result in * OutOfMemoryError: Requested array size exceeds VM limit */ private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** * Increases the capacity to ensure that it can hold at least the * number of elements specified by the minimum capacity argument. * * @param minCapacity the desired minimum capacity */ private void grow(int minCapacity) { // 获得当前数组长度 int oldCapacity = elementData.length; //新的数组长度=当前数组长度+0.5倍 int newCapacity = oldCapacity + (oldCapacity >> 1); //如果新的数组长度小于最小容量minCapacity,则新的数组长度为minCapacity if (newCapacity - minCapacity < 0) newCapacity = minCapacity; /** * 新的数组长度大于MAX_ARRAY_SIZE(Integer.MAX_VALUE - 8),调用hugeCapacity * 要么抛出OOM,要么扩展到Integer.MAX_VALUE长度 */ if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); //创建一个newCapacity长度的新数组,拷贝之前的数据 elementData = Arrays.copyOf(elementData, newCapacity); } private static int hugeCapacity(int minCapacity) { /** * 如果当前数组长度已经达到Integer.MAX_VALUE,此时再继续添加数据就会得到负值 * Integer.MAX_VALUE+1 <0 */ if (minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE ://最多扩展到Integer.MAX_VALUE长度 MAX_ARRAY_SIZE; } /** *返回当前列表内元素的个数 */ public int size() { return size; } /** * 返回当前列表内是否有元素 */ public boolean isEmpty() { return size == 0; } /** * 判断o是否在列表里 */ public boolean contains(Object o) { return indexOf(o) >= 0; } /** * Returns the index of the first occurrence of the specified element * in this list, or -1 if this list does not contain the element. * More formally, returns the lowest index <tt>i</tt> such that * <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt>, * or -1 if there is no such index. */ public int indexOf(Object o) { if (o == null) { for (int i = 0; i < size; i++) if (elementData[i]==null) return i; } else { for (int i = 0; i < size; i++) if (o.equals(elementData[i])) return i; } return -1; } /** * 返回o在列表中的位置 */ public int lastIndexOf(Object o) { /** * o为null时,遍历数组(最大长度为size)通过==来判断 */ if (o == null) { for (int i = size-1; i >= 0; i--) if (elementData[i]==null) return i; } else { /** * o不为null时,遍历数组(最大长度为size)通过equals来判断 * 如果某个对象重写equals方法,两个不同的对象可能相等 */ for (int i = size-1; i >= 0; i--) if (o.equals(elementData[i])) return i; } return -1; } /** * 拷贝一份列表,只是拷贝了元素的引用 */ public Object clone() { try { ArrayList<?> v = (ArrayList<?>) super.clone(); v.elementData = Arrays.copyOf(elementData, size); v.modCount = 0; return v; } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(e); } } public Object[] toArray() { return Arrays.copyOf(elementData, size); } @SuppressWarnings("unchecked") public <T> T[] toArray(T[] a) { if (a.length < size) // a的长度小于列表元素个数时,就只创建一个size长度的新数组 return (T[]) Arrays.copyOf(elementData, size, a.getClass()); System.arraycopy(elementData, 0, a, 0, size); if (a.length > size) a[size] = null;//将第size值设为null return a; } // Positional Access Operations @SuppressWarnings("unchecked") E elementData(int index) { return (E) elementData[index]; } public E get(int index) { rangeCheck(index); return elementData(index); } public E set(int index, E element) { rangeCheck(index); E oldValue = elementData(index); elementData[index] = element; return oldValue; } public boolean add(E e) { ensureCapacityInternal(size + 1); // Increments modCount!! elementData[size++] = e; return true; } public void add(int index, E element) { rangeCheckForAdd(index); ensureCapacityInternal(size + 1); // Increments modCount!! //将从index开始的元素都往后移一位 System.arraycopy(elementData, index, elementData, index + 1, size - index); elementData[index] = element; size++; } public E remove(int index) { rangeCheck(index); modCount++; E oldValue = elementData(index); /** * 计算需要移动的元素个数 */ int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); //列表最后一个元素设为null(不是数组最后一位设为null) elementData[--size] = null; // clear to let GC do its work return oldValue; } public boolean remove(Object o) { if (o == null) { for (int index = 0; index < size; index++) if (elementData[index] == null) { fastRemove(index); return true; } } else { for (int index = 0; index < size; index++) if (o.equals(elementData[index])) { fastRemove(index); return true; } } return false; } private void fastRemove(int index) { //不需要检查边界 modCount++; int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its work } /** * Removes all of the elements from this list. The list will * be empty after this call returns. */ public void clear() { modCount++; //只是将元素全部置为null,elementData数组长度没变 for (int i = 0; i < size; i++) elementData[i] = null; size = 0; } /** * Appends all of the elements in the specified collection to the end of * this list, in the order that they are returned by the * specified collection's Iterator. The behavior of this operation is * undefined if the specified collection is modified while the operation * is in progress. (This implies that the behavior of this call is * undefined if the specified collection is this list, and this * list is nonempty.) * * @param c collection containing elements to be added to this list * @return <tt>true</tt> if this list changed as a result of the call * @throws NullPointerException if the specified collection is null */ public boolean addAll(Collection<? extends E> c) { Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount System.arraycopy(a, 0, elementData, size, numNew); size += numNew; return numNew != 0; } /** * Inserts all of the elements in the specified collection into this * list, starting at the specified position. Shifts the element * currently at that position (if any) and any subsequent elements to * the right (increases their indices). The new elements will appear * in the list in the order that they are returned by the * specified collection's iterator. * * @param index index at which to insert the first element from the * specified collection * @param c collection containing elements to be added to this list * @return <tt>true</tt> if this list changed as a result of the call * @throws IndexOutOfBoundsException {@inheritDoc} * @throws NullPointerException if the specified collection is null */ public boolean addAll(int index, Collection<? extends E> c) { rangeCheckForAdd(index); Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount int numMoved = size - index; if (numMoved > 0) System.arraycopy(elementData, index, elementData, index + numNew, numMoved); System.arraycopy(a, 0, elementData, index, numNew); size += numNew; return numNew != 0; } /** * 实现原理:将toIndex之后的元素往前移动到fromIndex之后 */ protected void removeRange(int fromIndex, int toIndex) { modCount++; int numMoved = size - toIndex; System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved); // clear to let GC do its work int newSize = size - (toIndex-fromIndex); for (int i = newSize; i < size; i++) { elementData[i] = null; } size = newSize; } /** * Checks if the given index is in range. If not, throws an appropriate * runtime exception. This method does *not* check if the index is * negative: It is always used immediately prior to an array access, * which throws an ArrayIndexOutOfBoundsException if index is negative. */ private void rangeCheck(int index) { if (index >= size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } /** * A version of rangeCheck used by add and addAll. */ private void rangeCheckForAdd(int index) { if (index > size || index < 0) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } /** * Constructs an IndexOutOfBoundsException detail message. * Of the many possible refactorings of the error handling code, * this "outlining" performs best with both server and client VMs. */ private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size; } /** * Removes from this list all of its elements that are contained in the * specified collection. * * @param c collection containing elements to be removed from this list * @return {@code true} if this list changed as a result of the call * @throws ClassCastException if the class of an element of this list * is incompatible with the specified collection * (<a href="Collection.html#optional-restrictions">optional</a>) * @throws NullPointerException if this list contains a null element and the * specified collection does not permit null elements * (<a href="Collection.html#optional-restrictions">optional</a>), * or if the specified collection is null * @see Collection#contains(Object) */ public boolean removeAll(Collection<?> c) { Objects.requireNonNull(c); return batchRemove(c, false); } /** * 保留c中的元素,其他的元素都删除 * @param c * @return */ public boolean retainAll(Collection<?> c) { Objects.requireNonNull(c); return batchRemove(c, true); } /** * 批量删除 * @param c * @param complement true表示删除c以外的元素 false表示删除c中所含的元素 * @return */ private boolean batchRemove(Collection<?> c, boolean complement) { final Object[] elementData = this.elementData; int r = 0, w = 0; boolean modified = false; try { for (; r < size; r++) if (c.contains(elementData[r]) == complement) elementData[w++] = elementData[r]; } finally { // Preserve behavioral compatibility with AbstractCollection, // even if c.contains() throws. if (r != size) { System.arraycopy(elementData, r, elementData, w, size - r); w += size - r; } if (w != size) { // clear to let GC do its work for (int i = w; i < size; i++) elementData[i] = null; modCount += size - w; size = w; modified = true; } } return modified; } }
相关的面试题:
1、ArrayList的大小是如何自动增加的?你能分享一下你的代码吗?
arrayList每次新增元素的时候回确保容量是否够用,如果不够用会扩大容量,重新创建一个更大容量的数组,并将原有元素拷贝进去,具体代码如下
private void grow(int minCapacity) { // 获得当前数组长度 int oldCapacity = elementData.length; //新的数组长度=当前数组长度+0.5倍 int newCapacity = oldCapacity + (oldCapacity >> 1); //如果新的数组长度小于最小容量minCapacity,则新的数组长度为minCapacity if (newCapacity - minCapacity < 0) newCapacity = minCapacity; /** * 新的数组长度大于MAX_ARRAY_SIZE(Integer.MAX_VALUE - 8),调用hugeCapacity * 要么抛出OOM,要么扩展到Integer.MAX_VALUE长度 */ if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); //创建一个newCapacity长度的新数组,拷贝之前的数据 elementData = Arrays.copyOf(elementData, newCapacity); }
2、什么情况下你会使用ArrayList?什么时候你会选择LinkedList?
这又是一个大多数面试者都会困惑的问题。多数情况下,当你遇到访问元素比插入或者是删除元素更加频繁的时候,你应该使用ArrayList。另外一方面,当你在某个特别的索引中,插入或者是删除元素更加频繁,或者你压根就不需要访问元素的时候,你会选择LinkedList。这里的主要原因是,在ArrayList中访问元素的最糟糕的时间复杂度是”1″,而在LinkedList中可能就是”n”了。在ArrayList中增加或者删除某个元素,通常会调用System.arraycopy方法,这是一种极为消耗资源的操作,因此,在频繁的插入或者是删除元素的情况下,LinkedList的性能会更加好一点。
3、当传递ArrayList到某个方法中,或者某个方法返回ArrayList,什么时候要考虑安全隐患?如何修复安全违规这个问题呢?
当array被当做参数传递到某个方法中,如果array在没有被复制的情况下直接被分配给了成员变量,那么就可能发生这种情况,即当原始的数组被调用的方法改变的时候,传递到这个方法中的数组也会改变。下面的这段代码展示的就是安全违规以及如何修复这个问题。
ArrayList被直接赋给成员变量——安全隐患:
修复这个安全隐患:
4、如何复制某个ArrayList到另一个ArrayList中去?写出你的代码?
下面就是把某个ArrayList复制到另一个ArrayList中去的几种技术:
- 使用clone()方法,比如ArrayList newArray = oldArray.clone();
- 使用ArrayList构造方法,比如:ArrayList myObject = new ArrayList(myTempObject);
- 使用Collection的copy方法。
注意1和2是浅拷贝(shallow copy)。
5、在索引中ArrayList的增加或者删除某个对象的运行过程?效率很低吗?解释一下为什么?
在ArrayList中增加或者是删除元素,要调用System.arraycopy这种效率很低的操作,如果遇到了需要频繁插入或者是删除的时候,你可以选择其他的Java集合,比如LinkedList。看一下下面的代码:
在ArrayList的某个索引i处添加元素:
public void add(int index, E element) { rangeCheckForAdd(index); ensureCapacityInternal(size + 1); // Increments modCount!! //将从index开始的元素都往后移一位 System.arraycopy(elementData, index, elementData, index + 1, size - index); elementData[index] = element; size++; }
删除ArrayList的某个索引i处的元素:
public E remove(int index) { rangeCheck(index); modCount++; E oldValue = elementData(index); /** * 计算需要移动的元素个数 */ int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); //列表最后一个元素设为null(不是数组最后一位设为null) elementData[--size] = null; // clear to let GC do its work return oldValue; }
相关推荐
Arraylist
ArrayList是Java集合框架中List接口的一个具体实现,它继承了AbstractList抽象类,并实现了List、RandomAccess、Cloneable和Serializable接口。ArrayList的核心特点是其内部基于动态数组的数据结构,即使用Object...
Java集合类ArrayList简单雇员管理系统 本文将从标题、描述、标签和部分内容中提取相关知识点,并进行详细的解释。 标题和描述 从标题和描述中,我们可以看到这是一个使用Java集合类ArrayList实现的简单雇员管理...
集合,ArrayList,hashmap
在探讨 JDK 7.0 中 ArrayList 的底层实现原理之前,首先需要了解 ArrayList 作为 Java 集合框架中 List 接口的动态数组实现类的基本概念。ArrayList 提供了一种存储有序、可重复、允许为 null 的数据结构,并且该...
ArrayList作为集合框架中的一个重要成员,它是基于数组实现的动态列表,允许存储任意类型的数据。下面将详细阐述ArrayList的相关知识点。 **一、ArrayList简介** ArrayList是一个继承自AbstractList并实现了...
### ArrayList集合简介 ArrayList是Java集合框架中的重要部分,是一种能够存储可变数量元素的集合。ArrayList的特点是基于数组的数据结构,这使得它在随机访问元素时表现良好,但数组的缺点是容量固定,而ArrayList...
相比之下,ArrayList是C#中System.Collections命名空间下的一个类,它实现了IList接口,允许动态调整大小。ArrayList内部基于数组实现,但提供了更多的灵活性。当你不确定需要存储多少元素或者需要频繁添加、删除...
在深入讨论`ArrayList`之前,让我们先明确一下`集合`的概念。 集合是Java中用于存储多个对象的数据结构。Java提供两种主要类型的集合框架:接口(如`List`、`Set`和`Queue`)和实现这些接口的类(如`ArrayList`、`...
集合(Arraylist,LinkedList)进阶思维导图
Java 集合类详解 Java 集合类是 Java 语言中的一种基本数据结构,用于存储和操作大量数据。集合类可以分为三大类:Collection、List 和 Set。 Collection 是集合框架中的根接口,提供了基本的集合操作,如 add、...
集合+ArrayList+增删改查+练习 - 本资源是一个集合的练习,讲解了ArrayList的特点和用法,以及如何用Java对ArrayList进行增删改查的操作,包括使用迭代器,比较器,排序等。
本篇文章将重点讨论“ArrayList”这一集合对象的使用,通过一个练习案例来深入理解其功能和操作方法。 ArrayList是System.Collections命名空间下的一个类,它是.NET框架中最早提供的动态数组。ArrayList允许我们...
day14-ArrayList集合 1.ArrayList 1.1ArrayList类概述【理解】 什么是集合 提供一种存储空间可变的存储模型,存储的数据容量可以发生改变 ArrayList集合的特点 底层是数组实现的,长度可以变化 泛型的使用 ...
用java语言编写一个程序实现学员成绩管理,每个学员包括3门课的成绩,从键盘输入学员信息, 包括学号、姓名、三门课成绩,计算出学员的平均成绩,按照学员平均成绩由大到小排序 插入功能:在排序后的学员成绩表中...
ArrayList集合工具类是Java编程语言中的一个重要组成部分,它属于Java集合框架的一部分,主要用来存储一组有序的、可变大小的对象。ArrayList是基于数组实现的,它提供了动态增长的能力,允许我们在列表的任何位置...
介绍Arraaylist,tree,LinkList等
今天,我们将深入了解 Java 中的集合类别,包括 ArrayList、Vector、LinkedList 和 Map 等。 ArrayList ArrayList 是一种基于数组的集合类别,它可以存储大量的数据。ArrayList 的特点是:它可以动态地增加或减少...
Java集合框架中,ArrayList是一种常见的集合实现类,用于存储和操作对象集合。ArrayList基于动态数组的数据结构,因此它能够提供自动扩容的功能,同时也能够快速地进行随机访问。本篇文档将深入探讨ArrayList的内部...