`
gwbasic
  • 浏览: 56314 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类
最新评论

Hessian2序列化

阅读更多
unit Hessian2Output;

{
  title: hessian 2.0 序列化
  author: Xiao Chun 
  email: cnxiaochun#gmail.com
  version: draft
  reference: http://hessian.caucho.com/
}

interface
uses Classes;
const
  BUFFER_SIZE = 4096;

  INT_DIRECT_MIN = -$10;
  INT_DIRECT_MAX = $2F;
  INT_ZERO = $90;

  INT_BYTE_MIN = -$800;
  INT_BYTE_MAX = $7FF;
  INT_BYTE_ZERO = $C8;

  INT_SHORT_MIN = -$40000;
  INT_SHORT_MAX = $3FFFF;
  INT_SHORT_ZERO = $D4;

  LONG_DIRECT_MIN = -$08;
  LONG_DIRECT_MAX = $0F;
  LONG_ZERO = $E0;

  LONG_BYTE_MIN = -$800;
  LONG_BYTE_MAX = $7FF;
  LONG_BYTE_ZERO = $F8;

  LONG_SHORT_MIN = -$40000;
  LONG_SHORT_MAX = $3FFFF;
  LONG_SHORT_ZERO = $3C;

  LONG_INT_MIN = -$7FFFFFFF - 1;
  LONG_INT_MAX = $7FFFFFFF;
  LONG_INT_ZERO = $77;

  STRING_DIRECT_MAX = $1F;
  STRING_DIRECT = $00;

  BYTES_DIRECT_MAX = $0F;
  BYTES_DIRECT = $20;

  DOUBLE_ZERO = $67;
  DOUBLE_ONE = $68;
  DOUBLE_BYTE = $69;
  DOUBLE_SHORT = $6A;
  DOUBLE_FLOAT = $6B;

  LENGTH_BYTE = $6E;
  LIST_FIXED = $76; // 'v'

  REF_BYTE = $4A;
  REF_SHORT = $4B;

  TYPE_REF = $75;
type
  THessian2Output = class(TObject)
  private
    FBuffer: array[0..BUFFER_SIZE - 1] of Byte;
    FOffset: integer;
    FStream: TStream;
    FFreeStreamOnDestroy: boolean;
    _typeRefs: TStringList;
    procedure PrintString(const AValue: WideString; AOffset, ACount: integer);
    procedure WriteType(const AType: WideString);
    procedure _WriteString(const AValue: WideString; AOffset, ACount: integer);
  public
    constructor Create(AStream: TStream);
    destructor Destroy; override;
  public
    procedure StartCall(const AMethodName: WideString);
    procedure CompleteCall;
    procedure Flush;
    procedure WriteInt(AValue: integer);
    procedure WriteLong(AValue: Int64);
    procedure WriteDouble(AValue: Double);
    procedure WriteBoolean(AValue: boolean);
    procedure WriteNull;
    procedure WriteString(const AValue: WideString);
    procedure WriteUTCDate(AValue: TDateTime);
    procedure WriteBytes(ASourceStream: TStream); overload;
    procedure WriteBytes(ASourceStream: TStream; AOffset, ACount: integer); overload;
    procedure WriteMapBegin; overload;
    procedure WriteMapBegin(const AType: WideString); overload;
    procedure WriteMapEnd;
    function WriteListBegin(ALength: integer; const AType: WideString): boolean; overload;
    function WriteListBegin(ALength: integer): boolean; overload;
    procedure WriteListEnd;
  end;

implementation
uses JavaDate;

constructor THessian2Output.Create(AStream: TStream);
begin
  inherited Create;
  FOffset := 0;
  if Assigned(AStream) then
  begin
    FFreeStreamOnDestroy := false;
    FStream := AStream;
  end
  else begin
    FFreeStreamOnDestroy := true;
    FStream := TMemoryStream.Create;
  end;
end;

destructor THessian2Output.Destroy;
begin
  if FFreeStreamOnDestroy then FStream.Free;
  if Assigned(_typeRefs) then _typeRefs.Free;
  inherited;
end;

procedure THessian2Output.StartCall(const AMethodName: WideString);
var
  Len: Integer;
begin
  if BUFFER_SIZE < FOffset + 16 then Flush;

  FBuffer[FOffset] := Byte('c'); Inc(FOffset);
  FBuffer[FOffset] := Byte(2); Inc(FOffset);
  FBuffer[FOffset] := Byte(0); Inc(FOffset);
  FBuffer[FOffset] := Byte('m'); Inc(FOffset);

  Len := Length(AMethodName);
  FBuffer[FOffset] := Byte(len shr 8 ); Inc(FOffset);
  FBuffer[FOffset] := Byte(len); Inc(FOffset);
  PrintString(AMethodName, 0, Len);
end;

procedure THessian2Output.CompleteCall;
begin
  if BUFFER_SIZE < FOffset + 16 then Flush;

  FBuffer[FOffset] := Byte('z'); Inc(FOffset);
end;

procedure THessian2Output.WriteInt(AValue: integer);
begin
  if BUFFER_SIZE < FOffset + 16 then Flush;

  if (INT_DIRECT_MIN <= AValue) and (AValue <= INT_DIRECT_MAX) then
  begin
    FBuffer[FOffset] := Byte(AValue + INT_ZERO); Inc(FOffset);
  end
  else if (INT_BYTE_MIN <= AValue) and (AValue <= INT_BYTE_MAX) then
  begin
    FBuffer[FOffset] := Byte(INT_BYTE_ZERO + (AValue shr 8 )); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue); Inc(FOffset);
  end
  else if (INT_SHORT_MIN <= AValue) and (AValue <= INT_SHORT_MAX) then
  begin
    FBuffer[FOffset] := Byte(INT_SHORT_ZERO + (AValue shr 16 )); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue shr 8 ); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue); Inc(FOffset);
  end
  else begin
    FBuffer[FOffset] := Byte('I'); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue shr 24); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue shr 16); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue shr 8 ); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue); Inc(FOffset);
  end
end;

procedure THessian2Output.WriteLong(AValue: int64);
begin
  if BUFFER_SIZE < FOffset + 16 then Flush;

  if (LONG_DIRECT_MIN <= AValue) and (AValue <= LONG_DIRECT_MAX) then
  begin
    FBuffer[FOffset] := Byte(AValue + LONG_ZERO); Inc(FOffset);
  end
  else if (LONG_BYTE_MIN <= AValue) and (AValue <= LONG_BYTE_MAX) then
  begin
    FBuffer[FOffset] := Byte(LONG_BYTE_ZERO + (AValue shr 8 )); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue); Inc(FOffset);
  end
  else if (LONG_SHORT_MIN <= AValue) and (AValue <= LONG_SHORT_MAX) then
  begin
    FBuffer[FOffset] := Byte(LONG_SHORT_ZERO + (AValue shr 16)); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue shr 8 ); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue); Inc(FOffset);
  end
  else if (LONG_INT_MIN <= AValue) and (AValue <= LONG_INT_MAX) then
  begin
    FBuffer[FOffset] := Byte(LONG_INT_ZERO); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue shr 24); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue shr 16); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue shr 8 ); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue); Inc(FOffset);
  end
  else begin
    FBuffer[FOffset] := Byte('L'); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue shr 56); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue shr 48); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue shr 40); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue shr 32); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue shr 24); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue shr 16); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue shr 8 ); Inc(FOffset);
    FBuffer[FOffset] := Byte(AValue); Inc(FOffset);
  end
end;

procedure THessian2Output.WriteDouble(AValue: Double);
var
  intValue: integer;
  longValue: int64;
  floatValue: single;
begin
  if BUFFER_SIZE < FOffset + 16 then Flush;

  if Int(AValue) = AValue then
  begin // 只有整数部分
    intValue := Round(AValue);
    if intValue = 0 then
    begin
      FBuffer[FOffset] := Byte(DOUBLE_ZERO); Inc(FOffset);
      exit;
    end
    else if intValue = 1 then
    begin
      FBuffer[FOffset] := Byte(DOUBLE_ONE); Inc(FOffset);
      exit;
    end
    else if (-$80 <= intValue) and (intValue < $80) then
    begin
      FBuffer[FOffset] := Byte(DOUBLE_BYTE); Inc(FOffset);
      FBuffer[FOffset] := Byte(intValue); Inc(FOffset);
      exit;
    end
    else if ($8000 <= intValue) and (intValue < $8000) then
    begin
      FBuffer[FOffset] := Byte(DOUBLE_SHORT); Inc(FOffset);
      FBuffer[FOffset] := Byte(intValue shr 8 ); Inc(FOffset);
      FBuffer[FOffset] := Byte(intValue); Inc(FOffset);
      exit;
    end;
  end;

  floatValue := AValue;
  if floatValue = AValue then
  begin
    FBuffer[FOffset] := Byte(DOUBLE_FLOAT); Inc(FOffset);
    intValue := PInteger(@floatValue)^;
    FBuffer[FOffset] := Byte(intValue shr 24); Inc(FOffset);
    FBuffer[FOffset] := Byte(intValue shr 16); Inc(FOffset);
    FBuffer[FOffset] := Byte(intValue shr 8 ); Inc(FOffset);
    FBuffer[FOffset] := Byte(intValue); Inc(FOffset);
    exit;
  end;

  FBuffer[FOffset] := Byte('D'); Inc(FOffset);
  longValue := PInt64(@AValue)^;
  FBuffer[FOffset] := Byte(longValue shr 56); Inc(FOffset);
  FBuffer[FOffset] := Byte(longValue shr 48); Inc(FOffset);
  FBuffer[FOffset] := Byte(longValue shr 40); Inc(FOffset);
  FBuffer[FOffset] := Byte(longValue shr 32); Inc(FOffset);
  FBuffer[FOffset] := Byte(longValue shr 24); Inc(FOffset);
  FBuffer[FOffset] := Byte(longValue shr 16); Inc(FOffset);
  FBuffer[FOffset] := Byte(longValue shr 8 ); Inc(FOffset);
  FBuffer[FOffset] := Byte(longValue); Inc(FOffset);
end;

procedure THessian2Output.WriteBoolean(AValue: boolean);
begin
  if BUFFER_SIZE < FOffset + 16 then Flush;

  if AValue then
  begin
    FBuffer[FOffset] := Byte('T'); Inc(FOffset);
  end
  else begin
    FBuffer[FOffset] := Byte('F'); Inc(FOffset);
  end
end;

procedure THessian2Output.WriteString(const AValue: WideString);
begin
  _WriteString(AValue, 0, Length(AValue));
end;

procedure THessian2Output.WriteUTCDate(AValue: TDateTime);
var
  UTCValue: int64;
begin
  UTCValue := DateTimeToJavaDate(AValue);

  if BUFFER_SIZE < FOffset + 16 then Flush;

  FBuffer[FOffset] := Byte('d'); Inc(FOffset);
  FBuffer[FOffset] := Byte(UTCValue shr 56); Inc(FOffset);
  FBuffer[FOffset] := Byte(UTCValue shr 48); Inc(FOffset);
  FBuffer[FOffset] := Byte(UTCValue shr 40); Inc(FOffset);
  FBuffer[FOffset] := Byte(UTCValue shr 32); Inc(FOffset);
  FBuffer[FOffset] := Byte(UTCValue shr 24); Inc(FOffset);
  FBuffer[FOffset] := Byte(UTCValue shr 16); Inc(FOffset);
  FBuffer[FOffset] := Byte(UTCValue shr 8 ); Inc(FOffset);
  FBuffer[FOffset] := Byte(UTCValue); Inc(FOffset);
end;

procedure THessian2Output.WriteNull;
begin
  if BUFFER_SIZE < FOffset + 16 then Flush;

  FBuffer[FOffset] := Byte('N'); Inc(FOffset);
end;

procedure THessian2Output.WriteBytes(ASourceStream: TStream);
begin
  if ASourceStream = nil then
  begin
    WriteNull;
  end
  else begin
    WriteBytes(ASourceStream, 0, ASourceStream.Size);
  end;
end;

procedure THessian2Output.WriteBytes(ASourceStream: TStream; AOffset, ACount: integer);
var
  sublen: integer;
  N: integer;
begin
  if ASourceStream = nil then
  begin
    WriteNull;
  end
  else begin
    if AOffset > 0 then
    begin
      ASourceStream.Position := AOffset;
    end
    else begin
      ASourceStream.Position := 0;
    end;

    if BUFFER_SIZE < FOffset + 16 then Flush;

    while ACount > $8000 do
    begin
      FBuffer[FOffset] := Byte('b'); Inc(FOffset);
      FBuffer[FOffset] := Byte($8000 shr 8 ); Inc(FOffset);
      FBuffer[FOffset] := Byte($8000); Inc(FOffset);

      sublen := $8000;
      while sublen > 0 do
      begin
        if sublen > (BUFFER_SIZE - FOffset) then N := BUFFER_SIZE - FOffset else N := sublen;
        ASourceStream.ReadBuffer(FBuffer, N); Inc(FOffset, N);

        // Flush
        FStream.WriteBuffer(FBuffer, FOffset);
        FOffset := 0;

        Dec(sublen, N);
      end;
      ACount := ACount - $8000;
      //AOffset := AOffset + $80000;
    end;

    if ACount < $10 then
    begin
      FBuffer[FOffset] := Byte(BYTES_DIRECT + ACount); Inc(FOffset);
    end
    else begin
      FBuffer[FOffset] := Byte('B'); Inc(FOffset);
      FBuffer[FOffset] := Byte(ACount shr 8 ); Inc(FOffset);
      FBuffer[FOffset] := Byte(ACount); Inc(FOffset);
    end;

    while ACount > 0 do
    begin
      if ACount > (BUFFER_SIZE - FOffset) then N := BUFFER_SIZE - FOffset else N := ACount;
      ASourceStream.ReadBuffer(FBuffer, N); Inc(FOffset, N);

      // Flush
      FStream.WriteBuffer(FBuffer, FOffset);
      FOffset := 0;

      Dec(ACount, N);
    end;
  end
end;

procedure THessian2Output.WriteMapBegin;
begin
  WriteMapBegin('');
end;

procedure THessian2Output.WriteMapBegin(const AType: WideString);
begin
  if BUFFER_SIZE < FOffset + 16 then Flush;

  FBuffer[FOffset] := Byte('M'); Inc(FOffset);
  WriteType(AType);
end;

procedure THessian2Output.WriteMapEnd;
begin
  if BUFFER_SIZE < FOffset + 16 then Flush;

  FBuffer[FOffset] := Byte('z'); Inc(FOffset);
end;

function THessian2Output.WriteListBegin(ALength: integer): boolean;
begin
  result := WriteListBegin(ALength, '');
end;

function THessian2Output.WriteListBegin(ALength: integer; const AType: WideString): boolean;
var
  refV: integer;
begin
  if _typeRefs <> nil then
  begin
    refV := _typeRefs.IndexOf(AType);
    if refV >= 0 then
    begin
      refV := Integer(_typeRefs.Objects[refV]);

      if BUFFER_SIZE < FOffset + 16 then Flush;

      FBuffer[FOffset] := Byte(LIST_FIXED); Inc(FOffset);

      WriteInt(refV);
      WriteInt(ALength);

      result := false;
      exit;
    end
  end;

  if BUFFER_SIZE < FOffset + 16 then Flush;

  FBuffer[FOffset] := Byte('V'); Inc(FOffset);
  WriteType(AType);

  if BUFFER_SIZE < FOffset + 16 then Flush;

  if ALength < 0 then
  begin
  end
  else if ALength < $100 then
  begin
    FBuffer[FOffset] := Byte(LENGTH_BYTE); Inc(FOffset);
    FBuffer[FOffset] := Byte(ALength); Inc(FOffset);
  end
  else begin
    FBuffer[FOffset] := Byte('l'); Inc(FOffset);
    FBuffer[FOffset] := Byte(ALength shr 24); Inc(FOffset);
    FBuffer[FOffset] := Byte(ALength shr 16); Inc(FOffset);
    FBuffer[FOffset] := Byte(ALength shr 8 ); Inc(FOffset);
    FBuffer[FOffset] := Byte(ALength); Inc(FOffset);
  end;
  result := True;
end;

procedure THessian2Output.WriteListEnd;
begin
  if BUFFER_SIZE < FOffset + 16 then Flush;

  FBuffer[FOffset] := Byte('z'); Inc(FOffset);
end;

procedure THessian2Output._WriteString(const AValue: WideString; AOffset, ACount: integer);
var
  sublen: integer;
  tail: integer;
begin
  while ACount > $8000 do
  begin
    if BUFFER_SIZE < FOffset + 16 then Flush;

    sublen := $8000;
    // chunk can't end in high surrogate
    tail := Integer(AValue[AOffset + sublen - 1]);
    if ($D800 <= tail) and (tail <= $DBFF) then dec(sublen);

    FBuffer[FOffset] := Byte('s'); Inc(FOffset);
    FBuffer[FOffset] := Byte(sublen shr 8 ); Inc(FOffset);
    FBuffer[FOffset] := Byte(sublen); Inc(FOffset);

    PrintString(AValue, AOffset, sublen);

    ACount := ACount - sublen;
    AOffset := AOffset + sublen;
  end;

  if BUFFER_SIZE < FOffset + 16 then Flush;

  if ACount <= STRING_DIRECT_MAX then
  begin
    FBuffer[FOffset] := Byte(STRING_DIRECT + ACount); Inc(FOffset);
  end
  else begin
    FBuffer[FOffset] := Byte('S'); Inc(FOffset);
    FBuffer[FOffset] := Byte(ACount shr 8 ); Inc(FOffset);
    FBuffer[FOffset] := Byte(ACount); Inc(FOffset);
  end;
  PrintString(AValue, AOffset, ACount);
end;

procedure THessian2Output.WriteType(const AType: WideString);
var
  Len: integer;
  typeRefV: integer;
begin
  Len := Length(AType);
  if Len = 0 then exit;

  if _typeRefs = nil then
  begin
    _typeRefs := TStringList.Create;
  end;

  typeRefV := _typeRefs.IndexOf(AType);
  if typeRefV >= 0 then
  begin
    typeRefV := Integer(_typeRefs.Objects[typeRefV]);

    if BUFFER_SIZE < FOffset + 16 then Flush;

    FBuffer[FOffset] := Byte(TYPE_REF); Inc(FOffset);

    writeInt(typeRefV);
  end
  else begin
    _typeRefs.AddObject(AType, TObject(_typeRefs.Count));

    if BUFFER_SIZE < FOffset + 16 then Flush;

    FBuffer[FOffset] := Byte('t'); Inc(FOffset);
    FBuffer[FOffset] := Byte(Len shr 8 ); Inc(FOffset);
    FBuffer[FOffset] := Byte(Len); Inc(FOffset);
    PrintString(AType, 0, Len);
  end
end;

procedure THessian2Output.PrintString(const AValue: WideString; AOffset, ACount: integer);
var
  I: integer;
  ch: integer;
begin
  for i := 1 to ACount do
  begin
    if BUFFER_SIZE < FOffset + 16 then Flush;

    // encoded as UTF-8
    ch := Integer(AValue[i + AOffset]);
    if ch < $80 then
    begin
      FBuffer[FOffset] := Byte(ch); Inc(FOffset);
    end
    else if ch < $800 then
    begin
      FBuffer[FOffset] := Byte($C0 + ((ch shr 6) and $1F)); Inc(FOffset);
      FBuffer[FOffset] := Byte($80 + (ch and $3F)); Inc(FOffset);
    end
    else begin
      FBuffer[FOffset] := Byte($E0 + ((ch shr 12) and $F)); Inc(FOffset);
      FBuffer[FOffset] := Byte($80 + ((ch shr 6) and $3F)); Inc(FOffset);
      FBuffer[FOffset] := Byte($80 + (ch and $3F)); Inc(FOffset);
    end
  end
end;

procedure THessian2Output.Flush;
var
  offset: integer;
begin
  offset := FOffset;
  if offset > 0 then
  begin
    FOffset := 0;
    FStream.WriteBuffer(FBuffer, offset);
  end
end;
end.
分享到:
评论
5 楼 jxd1976 2008-08-06  
下面没了?
4 楼 neo 2007-10-26  
不错,期待早点出反序列化的Unit啊
3 楼 tiyi 2007-10-16  
超爱Delphi。
还要做反序列化的。
2 楼 lgx522 2007-10-12  
有没有反序列化的?
如果能够反序列化,则可Java+Hessian+Delphi,相当完美的组合。
1 楼 liwenjun 2007-10-10  
我正在找delphi做hessian客户端方面的资料,感谢lz的无么提供。
能不能给些范例?12

相关推荐

    hessian学习基础篇——序列化和反序列化

    例如,服务器端可以使用Hessian序列化响应数据,客户端则通过反序列化接收到的二进制流来获取对象。这使得通信过程更为高效,尤其在数据量较大时,相比于文本格式,二进制格式能显著减少网络传输时间。 Hessian工具...

    S25-hessian反序列化1

    【S25-Hessian反序列化1】是一个关于Java中Hessian序列化库的讨论,主要涉及Hessian与原生Java序列化的差异以及在Spring框架中的应用。Hessian是一种二进制序列化协议,旨在提高远程过程调用(RPC)的效率。与原生Java...

    Hessian 的字段序列化小记

    - 首先,Hessian序列化器会遍历Java对象的所有字段,对每个字段进行处理。 - 对于基本类型,如int、boolean、double等,Hessian有专门的编码方式,直接将其转换为字节。 - 对于复杂类型如对象和数组,Hessian会...

    Hessian 2.0序列化协议规范.docx

    《Hessian 2.0序列化协议规范》 在分布式计算和网络通信中,数据的序列化和反序列化是至关重要的环节。Hessian 2.0是一种高效的二进制序列化协议,它旨在减少网络传输的数据量,提高数据交换的效率。本文将详细介绍...

    hessian序列化.pdf

    Hessian序列化机制分析 Hessian序列化是基于Java的开源remoting框架,速度非常快。有人做过测试,结果表明Hessian序列化的速度要比Java的快上一倍,并且序列化后的字节数也要比Java的少一倍。那么,Hessian序列化的...

    hessian序列化规范

    《Hessian序列化规范详解》 在分布式系统中,数据传输是不可或缺的一部分,而序列化与反序列化作为数据传输的基础,扮演着至关重要的角色。Hessian,作为一种高效的二进制序列化协议,由Caucho公司开发,广泛应用于...

    Nacos JRaft Hessian 反序列化 RCE 分析.pdf

    ### Nacos JRaft Hessian 反序列化 RCE 分析 #### 一、背景介绍 Nacos 是阿里巴巴开源的一款易于构建云原生应用的动态服务发现、配置管理和服务管理平台。JRafT 是 SOFAStack 微服务平台中的一个分布式一致性组件...

    浅谈Java序列化和hessian序列化的差异

    Java序列化和Hessian序列化的差异 Java序列化和Hessian序列化是两种常用的序列化机制,它们都可以将对象转换为字节流,以便在网络上传输。但是,两者之间有着很大的差异,今天我们就来比较一下它们的实现机制和特点...

    removal RCE、Hessian 反序列化、Yaml反序列化、密码解密、部分常用敏感路径(漏洞更新截止2024.9.12)

    removal RCE、Hessian 反序列化、Yaml反序列化、密码解密、部分常用敏感路径(漏洞更新截止2024.9.12)

    Hessian学习简单demo

    Hessian的目标是提供一种快速、简洁的数据序列化和远程方法调用(RPC)机制。在这个简单的demo中,我们将探讨Hessian的核心概念,以及如何在实际应用中使用它。 首先,我们需要理解什么是数据序列化。数据序列化是...

    Hessian

    2. **简单类型支持**:Hessian支持基本的Java数据类型,如整型、浮点型、字符串、日期等,并且可以序列化和反序列化复杂对象。 3. **流式传输**:Hessian协议允许数据分块传输,这意味着服务端可以立即响应部分结果...

    Hessian 使用小结

    4. **序列化**:由于Hessian是基于二进制的,因此传输的对象需要实现`Serializable`接口,以确保它们能被正确序列化和反序列化。 5. **客户端调用**:客户端通过生成服务接口的代理对象来调用服务端的方法,这些...

    Hessian应用

    - **二进制序列化**:Hessian的二进制序列化机制将Java对象转换为紧凑的二进制形式,这种方式不仅比XML等文本格式更节省空间,而且提高了序列化的速度。 - **远程调用模型**:Hessian提供了客户端和服务端两部分组件...

    dubbo介绍和使用

    1. **序列化**:Dubbo 默认使用 Hessian 2 序列化库,同时支持 Java 的 Serializable 机制,并提供了更高效的序列化实现。 - **Hessian 2**:一种高效的二进制格式,适合网络传输。 - **Java Serializable**:Java...

    Hessian 学习 例子 实例

    服务端使用Hessian序列化`Person`对象,客户端则接收这个二进制流并反序列化为`Person`对象。这可以通过Hessian提供的库来实现,例如在Java中,我们可以使用Caucho的Hessian库。 在实际应用中,Hessian常用于微服务...

    hessian-4.0.51.jar

    hessian.jar,Hessian的序列化输出 ,

    Dubbox的详细配置和案例

    Dubbox支持服务的注册与发现,动态配置,监控,负载均衡,容错,以及多种序列化方式,如Hessian2、Fast serialization等。这些特性使得Dubbox成为分布式系统中的关键组件,能够帮助开发者构建高可用、高性能的服务...

    dubbox 2.8.4 完整jar包

    同时,它也支持多种序列化方式,如Java自带的Java序列化、Hessian2序列化等,以适应不同的性能和兼容性需求。 4. **负载均衡**:Dubbo提供了多种负载均衡策略,如Random、RoundRobin、LeastActive等,可以根据实际...

Global site tag (gtag.js) - Google Analytics