`
gstarwd
  • 浏览: 1569257 次
  • 性别: Icon_minigender_1
  • 来自: 杭州
社区版块
存档分类
最新评论

Silverlight Socket 实现收发信息

阅读更多

刚接触Silverlight的时候,除了其异步应用WCF、流媒体、动画效果等方面外,Socket是最另我兴奋的功能。

在Web上实现Socket虽然不是什么新鲜事了,Activex,flash等都可以实现这样的效果,但是Silverlight这样方便的运用Socket让服务器与客户端通信确是我之前没有体验过的。

用它可以做什么?可以连线式的让服务器与客户端交互,而且,是在Web上,那么Web开发游戏,语音,视频聊天等都可以基于Socket功能实现,另外,服务器端是独立出来的,不依赖IIS进程,这样让数据之间的交互更自由。

废话不说,下面来看看如何实现

首先,在进行数据交换之前,我们必须明白Silverlight Socket的一些规矩和原则。

Silverlight客户端的Socket都是异步的,这点很容易明白,另外就是,考虑到Silverlight是应用到Web上的,而Silverlight的Socket自然就有一些安全限制。

每一个请求到服务器端的新的Socket连接会话Silverlight都会先悄悄的用另一个Socket去请求策略文件,这是很多刚接触 Silverlight Socket的人感到郁闷的地方,请求策略时,Silverlight会自己发送一个字符串<policy-file-request/>到 服务器的943端口,然后你必须在服务器程序里接收该请求,分析是否是策略请求后,发送一个策略文件的字符串给客户端,客户端接收到策略文件后自己分析完 后再发送程序员自己写的数据请求。

客户端的策略请求是自动发送的,策略文件的接收和分析也是自动的,是Silverlight自发工作的,不需要程序员手工写代码进行发送接收和分析。

但是,服务器端接收策略请求需要手工完成,程序员必须创建一个Socket监听943端口(该端口是固定的,客户端策略请求固定发送到该端口),然后分析请求过来的数据是否是策略请求,如果是的,那么就读取策略文件,再将该策略文件发送到客户端就可以了。

另外一个限制,Silverlight Socket 数据交换端口必须在4502-4534范围,也就是说,整个Socket将用到两个端口,一个是943用于策略请求,另一个是4502-4534范围的你指定的数据交换端口。

不管你的Socket代码是如何工作,第一次在连接之前,Silverlight都会发送策略请求,只有成功接收到服务器返回的策略文件后,你的 Socket代码才能进行工作,所以在第一次连接的时候,实际上Silverlight是进行了两次Socket,第一次请求策略,成功才进行你的 Socket,因此,服务器端必要监听两个端口,但是两个监听可以分开在两个线程上工作(两个线程,不是两个进程)。每个会话请求一次策略后,之后的请求 就不会再请求策略了,所以他们不能是线性的工作,而是两个独立的监听,否则会阻塞。

我的服务器端的策略监听和数据监听是用的两个子线程运行,而MS的示例是用的异步方法,都是为了不相互阻塞,用MS的方式也许更有效率些,而我是为了让代码更容易理解。

客户端实现了将文本框的内容发送到服务器端,然后服务器收到后显示出来,然后发回一句字符串,关闭连接,客户端收到服务器端的信息后也关闭连接。就这么简单

好后,具体看看示例,说明很详细。

客户端

建立一个Silverlight项目

XAML

< UserControl x : Class ="SilverlightTest.Socket1"

     xmlns ="http://schemas.microsoft.com/client/2007 "

     xmlns : x ="http://schemas.microsoft.com/winfx/2006/xaml "

     Width ="400" Height ="300">

    < Grid x : Name ="LayoutRoot" Background ="White" ShowGridLines ="True">

        < Grid.RowDefinitions >

            < RowDefinition />

            < RowDefinition />

        </ Grid.RowDefinitions >

 

        < TextBox x : Name ="txtToSend" Grid.Row ="0"/>

        < Button Grid.Row ="1" Click ="OnSend" Content ="Send" Margin ="20" />

    </ Grid >

</ UserControl >

代码:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Net;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Documents;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;

using System.Windows.Shapes;

using System.Net.Sockets;

using System.Threading;

using System.Text;

 

namespace SilverlightTest

{

    public partial class Socket1 : UserControl

    {

        public Socket1()

        {

            InitializeComponent();

        }

 

        // 定义一个可在全局使用的Socket

        System.Net.Sockets.Socket socket;

 

        // 定义一个同步上下文类,用来将子线程的操作调度到主线程上以可控制UI 属性。

        SynchronizationContext syn;

 

        // 发送信息按钮的单击事件

        void OnSend(object sender, EventArgs args)

        {

           

            // 定义一个字节数组,并将文本框的的类容转换为字节数组后存入

            byte [] bytes = Encoding .UTF8.GetBytes(txtToSend.Text);

           

            // 显示信息,可不要。

            txtToSend.Text += "\r\nDnsSafeHost:" +Application .Current.Host.Source.DnsSafeHost;

 

            // 将同步上下文设置在当前上下文(线程,主线程,可控制UI 的)

            syn = SynchronizationContext .Current;

       

            // socket 创建示例,并设置相关属性。

            socket = new System.Net.Sockets.Socket (AddressFamily .InterNetwork, SocketType .Stream,ProtocolType .Tcp);

 

            // 定义并实例一个Socket 参数

            SocketAsyncEventArgs socketArgs = new SocketAsyncEventArgs ();

           

            // 设置到远程终节点属性(4502 端口,为什么是4502MSSL 通信安全上有)

            socketArgs.RemoteEndPoint = new DnsEndPoint (Application .Current.Host.Source.DnsSafeHost, 4502);

 

            // 设置好当Socket 任何一个动作完成时的回调函数。

            socketArgs.Completed += new EventHandler <SocketAsyncEventArgs >(socketArgs_Completed);

            //Socket 参数的用户标识,实际上就是一个可以传递的OBJECT 参数。

            socketArgs.UserToken = bytes;

            // 执行连接。

            socket.ConnectAsync(socketArgs);

 

           

        }

 

        void socketArgs_Completed(object sender, SocketAsyncEventArgs e)

        {

            // 当任何一个Socket 动作完成,都回调该函数,然后对LastOperation 进行判断后继续执行相应的部分

            switch (e.LastOperation)

            {

                case SocketAsyncOperation .Connect:

                    ProcessConnect(e);

                    break ;

                case SocketAsyncOperation .Receive:

                    ProcessReceive(e);

                    break ;

                case SocketAsyncOperation .Send:

                    ProcessSend(e);

                    break ;

              }

        }

 

        // 将数据放入buffer 并进行异步发送

        void ProcessConnect(SocketAsyncEventArgs e)

        {

 

            // 当连接成功后,获取Socket 参数 e 传递过来的用户标识(也就是本示例中用户输入的字符串转换的Byte 字节数组)

            byte [] bytes = (byte [])e.UserToken;

 

            // 设置Socket 参数的缓冲区参数,将我们的字节数组设置为Socket 的缓冲区。

            e.SetBuffer(bytes, 0, bytes.Length);

           

            // 同步一下上下文,显示一下当前的状态信息。

            syn.Post(GetText,"States:" +e.SocketError.ToString()+"," +e.LastOperation.ToString());

           

            // 发送数据

            socket.SendAsync(e);

           

        }

 

        // 发送完成后,执行等待接收服务器发回的数据

        void ProcessSend(SocketAsyncEventArgs e)

        {

            // 定义个空的字节数组,设置好其大小

            byte [] bytes = new byte [1024];

            // 将前面定义字节数组设置成缓冲区

            e.SetBuffer(bytes, 0, bytes.Length);

            // 执行异步接收

            socket.ReceiveAsync(e);

        }

 

        // 当接收完成后

        void ProcessReceive(SocketAsyncEventArgs e)

        {

            // 在执行好接收后,本地SOCKET 的缓冲区就会被服务器发送的数据填充。

            // 显示下信息,当然也是用同步上下文的方式,在显示信息的时候,就直接将缓冲区的字节数组转换成字符串。

             syn.Post(GetText, Encoding .UTF8.GetString(e.Buffer, 0,e.Buffer.Length)+" and Received" );

            // 关闭Socket 连接

            socket.Close();

            // 最后显示下,Socket 关闭。

            syn.Post(GetText,"Socket Closed" );

        }

 

        // 同步上下文调用的方法。

        void GetText(object str)

        {

            txtToSend.Text +="\r\n" + str.ToString();

        }

 

 

    }

}

 

服务器端,创建一个控制台项目

代码:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Net.Sockets;

using System.Net;

using System.Threading;

using System.IO;

 

namespace ConsoleApp

{

    class Program

    {

        static void Main(string [] args)

        {

            Console .WriteLine("================Socket 服务开启======================" );

 

            // 建立一个子线程,用于创建Socket 来监听策略请求和发送。

            ThreadStart pcts = new ThreadStart (PolicyThread);

 

            Thread policythread = new Thread (pcts);

 

            policythread.Start();

 

            // 建立一个子线程,用于创建Socket 来监听信息请求和发送。

            ThreadStart infots = new ThreadStart (InfoThread);

 

            Thread infothread = new Thread (infots);

 

            infothread.Start();

 

        }

 

        // 监听策略请求和发送策略请求方法

        static void PolicyThread()

        {

            // 创建一个Socket 用来监听943 (固定的)端口的策略请求       

            Socket policy = new Socket (AddressFamily .InterNetwork, SocketType .Stream, ProtocolType .Tcp);

            policy.Bind(new IPEndPoint (IPAddress .Any, 943));

            policy.Listen(10);

 

            // 无限循环监听

            while (true )

            {

                if (policy.Blocking)// 如果Socket 是阻止模式的(这个东西实际上可以用不)

                {

 

                    // 创建Socket ,用来获取监听Socket 的第一个Socket 链接

                    Socket _policy = policy.Accept();

 

                    // 定义一个字符串,该字符串与Silverlight 发送过来的请求字符串一样。

                    string policyRequestString = "<policy-file-request/>" ;

 

                    // 定义一个字节数组

                    byte [] b = new byte [policyRequestString.Length];

                   

                    // 将客户端发送过来,服务器接收到的字节数组存入b

                    _policy.Receive(b);

 

                    // 将接收到的字节数组转换成字符串

                    string requeststring = System.Text.Encoding .UTF8.GetString(b, 0, b.Length);

 

                    // 显示客户端发送的字符串

                    Console .WriteLine(requeststring);

 

                    // 比对客户端发送过来的字符串是否和之前定义的额定好的策略请求字符串相同,如果相同,说明该请求是一个策略请求。

                    if (requeststring == policyRequestString)

                    { 

                        // 如果客户端发送的是一个策略请求,服务器发送策略文件到客户端

                        SendPolicy(_policy);

 

                        Console .WriteLine("Policy File have sended" );

 

                        // 关闭当前连接Socket

                        _policy.Close();

                    }

                    else // 否则,显示错误

                    {

                        Console .WriteLine("not a sure request string!" );

                     }

                  

                }

 

            }

        }

 

        // 监听信息请求和发送信息方法

        static void InfoThread()

        {

            // 创建一个Socket 用于监听4502 端口,获取接收客户端发送过来的信息

            Socket socket = new Socket (AddressFamily .InterNetwork, SocketType .Stream, ProtocolType .Tcp);

            socket.Bind(new IPEndPoint (IPAddress .Any, 4502));

            socket.Listen(10);

 

            // 无线循环监听

            while (true )

            {

                // 创建Socket ,用来获取监听Socket 的第一个Socket 链接

                 Socket _socket = socket.Accept();

 

                // 创建一个空字节数组

                byte [] b2 = new byte [1024];

 

                // 将接受到的字节数组存入到之前定义的b2 字节数组中。

                _socket.Receive(b2);

 

                // 显示接收到的信息

                Console .WriteLine(Encoding .UTF8.GetString(b2));

 

                // 发回一个信息给客户端,该信息是字节数组,所以我们将信息字符串转换成字节数组

                _socket.Send(Encoding .UTF8.GetBytes("This Send Over!!" ));

 

                // 关闭当前Socket 连接

                _socket.Close();

            }

        }

 

 

        // 发送策略文件的方法

        // 参数是传递进来的Socket 连接

        static void SendPolicy(Socket socket)

        {

            // 创建一个文件流,该文件留指定代开一个策略文件,至于策略文件的格式,MSSilverlight 有详细说明和配置方法

            FileStream fs = new FileStream (@"D:\WebSites\S

分享到:
评论

相关推荐

    silverlight+Socket

    客户端源码主要涉及Silverlight UI布局、Socket连接和数据收发的实现;服务器源码则关注Socket监听、连接管理和消息传递的逻辑。通过分析源码,我们可以深入理解如何在实践中结合Silverlight和Socket实现即时通讯...

    OFDM、OOK、PPM、QAM 的误码率模拟【绘制不同调制方案的误码率曲线】附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    8c71b76fb2ec10cf50fc6b0308d3dcfc_9545878e2b97a84b2e089ece58da9e82.png

    8c71b76fb2ec10cf50fc6b0308d3dcfc_9545878e2b97a84b2e089ece58da9e82

    Android SO逆向-对象的拷贝构造函数.pdf

    Android逆向过程学习

    基于S7-200 PLC的糖果包装控制系统设计与实现

    内容概要:本文详细介绍了基于西门子S7-200 PLC的糖果包装控制系统的设计与实现。首先阐述了PLC在工业自动化领域的优势及其在糖果包装生产线中的重要性。接着深入探讨了系统的硬件连接方式,包括传感器、执行机构与PLC的具体接口配置。随后展示了关键的编程实现部分,如糖果计数、包装执行、送膜控制、称重判断以及热封温度控制等具体梯形图代码片段。此外,还分享了一些实用的经验技巧,如防止信号抖动、PID参数优化、故障诊断方法等。最后总结了该系统的优势,强调其对提高生产效率和产品质量的重要作用。 适合人群:从事工业自动化控制、PLC编程的技术人员,尤其是对小型PLC系统感兴趣的工程师。 使用场景及目标:适用于糖果制造企业,旨在提升包装生产线的自动化程度,确保高效稳定的生产过程,同时降低维护成本并提高产品一致性。 其他说明:文中不仅提供了详细的理论讲解和技术指导,还结合实际案例进行了经验分享,有助于读者更好地理解和掌握相关知识。

    PLC与WinCC实现三部十层电梯协同控制及优化技巧

    内容概要:本文详细介绍了参与西门子杯比赛中关于三部十层电梯系统的博图V15.1程序设计及其WinCC画面展示的内容。文中不仅展示了电梯系统的基本架构,如抢单逻辑、方向决策、状态机管理等核心算法(采用SCL语言编写),还分享了许多实际调试过程中遇到的问题及解决方案,例如未初始化变量导致的异常行为、状态机遗漏空闲状态、WinCC画面动态显示的挑战以及通信配置中的ASCII码解析错误等问题。此外,作者还特别提到一些创意性的设计,如电梯同时到达同一层时楼层显示器变为闪烁爱心的效果,以及节能模式下电梯自动停靠中间楼层的功能。 适合人群:对PLC编程、工业自动化控制、电梯调度算法感兴趣的工程技术人员,尤其是准备参加类似竞赛的学生和技术爱好者。 使用场景及目标:适用于希望深入了解PLC编程实践、掌握电梯群控系统的设计思路和技术要点的人士。通过学习本文可以更好地理解如何利用PLC进行复杂的机电一体化项目的开发,提高解决实际问题的能力。 其他说明:文章风格幽默诙谐,将严肃的技术话题融入轻松的生活化比喻之中,使得原本枯燥的专业知识变得生动有趣。同时,文中提供的经验教训对于从事相关领域的工作者来说非常宝贵,能够帮助他们少走弯路并激发更多创新思维。

    慧荣量产工具合集.zip

    慧荣量产工具合集.zip

    永磁同步电机FOC控制与SVPWM算法仿真模型解析

    内容概要:本文详细介绍了永磁同步电机(PMSM)的FOC(磁场定向控制)和SVPWM(空间矢量脉宽调制)算法的仿真模型。首先解释了FOC的基本原理及其核心的坐标变换(Clark变换和Park变换),并给出了相应的Python代码实现。接下来探讨了SVPWM算法的工作机制,包括扇区判断和占空比计算的方法。此外,文章还讨论了电机的PI双闭环控制结构,即速度环和电流环的设计与实现。文中不仅提供了详细的理论背景,还分享了一些实用的编程技巧和注意事项,帮助读者更好地理解和应用这些算法。 适合人群:电气工程专业学生、从事电机控制系统开发的技术人员以及对永磁同步电机控制感兴趣的科研人员。 使用场景及目标:① 学习和掌握永磁同步电机的FOC控制和SVPWM算法的具体实现;② 提供丰富的代码示例和实践经验,便于快速搭建和调试仿真模型;③ 探讨不同参数设置对电机性能的影响,提高系统的稳定性和效率。 其他说明:文章强调了在实际应用中需要注意的一些细节问题,如坐标变换中的系数选择、SVPWM算法中的扇区判断优化以及PI控制器的参数调整等。同时,鼓励读者通过动手实验来加深对各个模块的理解。

    spring-ai-qianfan-1.0.0-M5.jar中文文档.zip

    # 压缩文件中包含: 中文文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;

    Android安全之旅系列博客导读.pdf

    Android逆向过程学习

    【图像处理】基于双目视觉的物体体积测量算法研究附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    3dmax插件按面积分离.ms

    3dmax插件

    spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar中文文档.zip

    # 【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar中文文档.zip】 中包含: 中文文档:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar中文文档.zip,java,spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar,org.springframework.ai,spring-ai-autoconfigure-vector-store-qdrant,1.0.0-M7,org.springframework.ai.vectorstore.qdr

    【ARIMA-WOA-LSTM】差分自回归移动平均方法-鲸鱼优化算法-LSTM预测研究附python代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    永磁同步电机控制系统中平方根容积卡尔曼滤波(SRCKF)的应用及优化

    内容概要:本文详细介绍了平方根容积卡尔曼滤波(SRCKF)在永磁同步电机(PMSM)控制系统中的应用及其相对于传统CKF的优势。文章首先指出传统CKF在处理协方差矩阵时存在的数值不稳定性和非正定问题,导致系统性能下降。接着,作者通过引入SRCKF,利用Cholesky分解和QR分解来确保协方差矩阵的正定性,从而提高状态估计的精度和稳定性。文中展示了具体的电机模型和状态方程,并提供了详细的代码实现,包括状态预测、容积点生成以及观测更新等关键步骤。此外,文章还分享了实际调试过程中遇到的问题及解决方案,如选择合适的矩阵分解库和处理电机参数敏感性。最终,通过实验数据对比,证明了SRCKF在突加负载情况下的优越表现。 适合人群:从事永磁同步电机控制研究的技术人员、研究生及以上学历的研究者。 使用场景及目标:适用于需要高精度状态估计的永磁同步电机控制系统的设计与优化,特别是在处理非线性问题和提高数值稳定性方面。 其他说明:文章引用了相关领域的权威文献,如Arasaratnam的TAC论文和Zhong的《PMSM无传感器控制综述》,并强调了实际工程实践中代码调试的重要性。

    tokenizers-0.31.1.jar中文文档.zip

    # 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu

    3.png

    3

    pchook源码纯源码不是dll

    pchook源码纯源码不是dll

    spring-ai-azure-store-1.0.0-M7.jar中文-英文对照文档.zip

    # 【spring-ai-azure-store-1.0.0-M7.jar中文-英文对照文档.zip】 中包含: 中文-英文对照文档:【spring-ai-azure-store-1.0.0-M7-javadoc-API文档-中文(简体)-英语-对照版.zip】 jar包下载地址:【spring-ai-azure-store-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-azure-store-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-azure-store-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-azure-store-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-azure-store-1.0.0-M7.jar中文-英文对照文档.zip,java,spring-ai-azure-store-1.0.0-M7.jar,org.springframework.ai,spring-ai-azure-store,1.0.0-M7,org.springframework.ai.vectorstore.azure,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,springframework,spring,ai,azure,store,中文-英文对照API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【spring-ai-azure-store-1.0.0-M7.jar中文-英文对照文档.zip】,再解

    ### XD/XL系列可编程控制器用户手册硬件篇总结. **手册概述

    内容概要:本文档是关于信捷电气XD、XL系列可编程序控制器的用户手册(硬件篇)。手册详细介绍了该系列PLC的硬件特性,包括产品概述、本体规格参数、系统构成、电源及输入输出规格、运行调试与维护、软元件切换等内容。此外,还提供了丰富的附录信息,如特殊软元件地址及功能、指令一览表、PLC功能配置表和常见问题解答。手册强调了安全操作的重要性,列出了多个安全注意事项,确保用户在正确环境下安装和使用设备,避免潜在风险。 适合人群:具备一定电气知识的专业人士,尤其是从事自动化控制系统设计、安装、调试及维护的技术人员。 使用场景及目标:①帮助用户了解XD、XL系列PLC的硬件特性和规格参数;②指导用户正确安装、接线、调试和维护设备;③提供详细的故障排查指南和技术支持信息,确保设备稳定运行;④为用户提供编程和指令使用的参考资料。 其他说明:手册不仅涵盖了硬件方面的内容,还涉及到了一些基础的软件编程概念,但更深入的编程指导请参考相关软件篇手册。用户在使用过程中遇到问题可以通过提供的联系方式获得技术支持。手册中的内容会定期更新,以适应产品改进和技术发展的需求。

Global site tag (gtag.js) - Google Analytics