`
gstarwd
  • 浏览: 1525168 次
  • 性别: Icon_minigender_1
  • 来自: 杭州
社区版块
存档分类
最新评论

vc++多线程起步

    博客分类:
  • VC++
阅读更多

c++多线程起步

2009-08-07 10:37

VC中多线程使用比较广泛而且实用,在网上看到的教程.感觉写的挺好.
一、问题的提出
编写一个耗时的单线程程序:
  新建一个基于对话框的应用程序SingleThread,在主对话框IDD_SINGLETHREAD_DIALOG添加一个按钮,ID为IDC_SLEEP_SIX_SECOND,标题为
“延时6秒”,添加按钮的响应函数,代码如下:

void CSingleThreadDlg::OnSleepSixSecond()
{
Sleep(6000); //延时6秒
}
  编译并运行应用程序,单击“延时6秒”按钮,你就会发现在这6秒期间程序就象“死机”一样,不在响应其它消息。为了更好地处理这种

耗时的操作,我们有必要学习——多线程编程。
二、多线程概述
  进程和线程都是操作系统的概念。进程是应用程序的执行实例,每个进程是由私有的虚拟地址空间、代码、数据和其它各种系统资源组成

,进程在运行过程中创建的资源随着进程的终止而被销毁,所使用的系统资源在进程终止时被释放或关闭。
  线程是进程内部的一个执行单元。系统创建好进程后,实际上就启动执行了该进程的主执行线程,主执行线程以函数地址形式,比如说

main或WinMain函数,将程序的启动点提供给Windows系统。主执行线程终止了,进程也就随之终止。
  每一个进程至少有一个主执行线程,它无需由用户去主动创建,是由系统自动创建的。用户根据需要在应用程序中创建其它线程,多个线

程并发地运行于同一个进程中。一个进程中的所有线程都在该进程的虚拟地址空间中,共同使用这些虚拟地址空间、全局变量和系统资源,所

以线程间的通讯非常方便,多线程技术的应用也较为广泛。
  多线程可以实现并行处理,避免了某项任务长时间占用CPU时间。要说明的一点是,目前大多数的计算机都是单处理器(CPU)的,为了运

行所有这些线程,操作系统为每个独立线程安排一些CPU时间,操作系统以轮换方式向线程提供时间片,这就给人一种假象,好象这些线程都在

同时运行。由此可见,如果两个非常活跃的线程为了抢夺对CPU的控制权,在线程切换时会消耗很多的CPU资源,反而会降低系统的性能。这一

点在多线程编程时应该注意。
  Win32 SDK函数支持进行多线程的程序设计,并提供了操作系统原理中的各种同步、互斥和临界区等操作。Visual C++
6.0中,使用MFC类库也实现了多线程的程序设计,使得多线程编程更加方便。
三、Win32 API对多线程编程的支持
  Win32 提供了一系列的API函数来完成线程的创建、挂起、恢复、终结以及通信等工作。下面将选取其中的一些重要函数进行说明。
1、HANDLE CreateThread (LPSECURITY_ATTRIBUTES lpThreadAttributes,
                 DWORD dwStackSize,
                 LPTHREAD_START_ROUTINE lpStartAddress,
                 LPVOID lpParameter,
                 DWORD dwCreationFlags,
                 LPDWORD lpThreadId);
该函数在其调用进程的进程空间里创建一个新的线程,并返回已建线程的句柄,其中各参数说明如下:
lpThreadAttributes:指向一个 SECURITY_ATTRIBUTES 结构的指针,该结构决定了线程的安全属性,一般置为 NULL;
dwStackSize:指定了线程的堆栈深度,一般都设置为0;
lpStartAddress:表示新线程开始执行时代码所在函数的地址,即线程的起始地址。一般情况为(LPTHREAD_START_ROUTINE)ThreadFunc,

ThreadFunc
是线程函数名;
lpParameter:指定了线程执行时传送给线程的32位参数,即线程函数的参数;
dwCreationFlags:控制线程创建的附加标志,可以取两种值。如果该参数为0,线程在被创建后就会立即开始执行;如果该参数为

CREATE_SUSPENDED,则系统产生线程后,该线程处于挂起状态,并不马上执行,直至函数ResumeThread被调用;

lpThreadId:该参数返回所创建线程的ID;
如果创建成功则返回线程的句柄,否则返回NULL。
2、DWORD SuspendThread(HANDLE hThread);
该函数用于挂起指定的线程,如果函数执行成功,则线程的执行被终止。 3、DWORD ResumeThread(HANDLE hThread);
该函数用于结束线程的挂起状态,执行线程。 4、VOID ExitThread(DWORD dwExitCode);
该函数用于线程终结自身的执行,主要在线程的执行函数中被调用。其中参数dwExitCode用来设置线程的退出码。 5、BOOL
TerminateThread(HANDLE hThread,DWORD dwExitCode);
  一般情况下,线程运行结束之后,线程函数正常返回,但是应用程序可以调用TerminateThread强行终止某一线程的执行。各参数含义如下


hThread:将被终结的线程的句柄;
dwExitCode:用于指定线程的退出码。
  使用TerminateThread()终止某个线程的执行是不安全的,可能会引起系统不稳定;虽然该函数立即终止线程的执行,但并不释放线程所占

用的资源。因此,一般不建议使用该函数。

6、BOOL PostThreadMessage(DWORD idThread,
   UINT Msg,
   WPARAM wParam,
   LPARAM lParam);
该函数将一条消息放入到指定线程的消息队列中,并且不等到消息被该线程处理时便返回。
idThread:将接收消息的线程的ID;
Msg:指定用来发送的消息;
wParam:同消息有关的字参数;
lParam:同消息有关的长参数;
调用该函数时,如果即将接收消息的线程没有创建消息循环,则该函数执行失败。
四、Win32 API多线程编程例程
例程1 MultiThread1
建立一个基于对话框的工程MultiThread1,在对话框IDD_MULTITHREAD1_DIALOG中加入两个按钮和一个编辑框,两个按钮的ID分别是IDC_START

,IDC_STOP
,标题分别为“启动”,“停止”,IDC_STOP的属性选中Disabled;编辑框的ID为IDC_TIME ,属性选中Read-only;
 
在MultiThread1Dlg.h文件中添加线程函数声明: void ThreadFunc();
注意,线程函数的声明应在类CMultiThread1Dlg的外部。 在类CMultiThread1Dlg内部添加protected型变量: HANDLE
hThread;
DWORD ThreadID;
分别代表线程的句柄和ID。
 
在MultiThread1Dlg.cpp文件中添加全局变量m_bRun : volatile BOOL m_bRun;
m_bRun 代表线程是否正在运行。
你要留意到全局变量 m_bRun 是使用 volatile 修饰符的,volatile
修饰符的作用是告诉编译器无需对该变量作任何的优化,即无需将它放到一个寄存器中,并且该值可被外部改变。对于多线程引用的全局变量

来说,volatile
是一个非常重要的修饰符。
编写线程函数: void ThreadFunc()
{
CTime time;
CString strTime;
m_bRun=TRUE;
while(m_bRun)
{
time=CTime::GetCurrentTime();
strTime=time.Format("%H:%M:%S");
::SetDlgItemText(AfxGetMainWnd()->m_hWnd,IDC_TIME,strTime);
Sleep(1000);
}
}
该线程函数没有参数,也不返回函数值。只要m_bRun为TRUE,线程一直运行。
双击IDC_START按钮,完成该按钮的消息函数: void CMultiThread1Dlg::OnStart()
{
// TODO: Add your control notification handler code here
hThread=CreateThread (NULL,
0,
(LPTHREAD_START_ROUTINE)ThreadFunc,
NULL,
0,
&ThreadID);
GetDlgItem(IDC_START)->EnableWindow(FALSE);
GetDlgItem(IDC_STOP)->EnableWindow(TRUE);
}
双击IDC_STOP按钮,完成该按钮的消息函数: void CMultiThread1Dlg::OnStop()
{
// TODO: Add your control notification handler code here
m_bRun=FALSE;
GetDlgItem(IDC_START)->EnableWindow(TRUE);
GetDlgItem(IDC_STOP)->EnableWindow(FALSE);
}
编译并运行该例程,体会使用Win32 API编写的多线程。

例程2 MultiThread2
  该线程演示了如何传送一个一个整型的参数到一个线程中,以及如何等待一个线程完成处理。
建立一个基于对话框的工程MultiThread2,在对话框IDD_MULTITHREAD2_DIALOG中加入一个编辑框和一个按钮,ID分别是IDC_COUNT,IDC_START
,按钮控件的标题为“开始”;
在MultiThread2Dlg.h文件中添加线程函数声明: void ThreadFunc(int integer);
注意,线程函数的声明应在类CMultiThread2Dlg的外部。
在类CMultiThread2Dlg内部添加protected型变量: HANDLE hThread;
DWORD ThreadID;
分别代表线程的句柄和ID。
 
打开ClassWizard,为编辑框IDC_COUNT添加int型变量m_nCount。在MultiThread2Dlg.cpp文件中添加:void
ThreadFunc(int integer)
{
int i;
for(i=0;i<integer;i++)
{
Beep(200,50);
Sleep(1000);
}
}
双击IDC_START按钮,完成该按钮的消息函数: void CMultiThread2Dlg::OnStart()
{
UpdateData(TRUE);
int integer=m_nCount;
hThread=CreateThread (NULL,
0,
(LPTHREAD_START_ROUTINE)ThreadFunc,
(VOID*)integer,
0,
&ThreadID);
GetDlgItem(IDC_START)->EnableWindow(FALSE);
WaitForSingleObject(hThread,INFINITE);
GetDlgItem(IDC_START)->EnableWindow(TRUE);
}
顺便说一下WaitForSingleObject函数,其函数原型为:DWORD WaitForSingleObject(HANDLE hHandle,DWORD
dwMilliseconds);
hHandle为要监视的对象 (一般为同步对象 ,也可以是线程)的句柄;
dwMilliseconds为hHandle对象 所设置的超时值,单位为毫秒;
  当在某一线程中调用该函数时,线程暂时挂起,系统监视hHandle所指向的对象 的状态。如果在挂起的dwMilliseconds毫秒内,线程所等待

数照样返回。参数dwMilliseconds有两个具有特殊意义的值:0和INFINITE。若为0,则该函数立即返回;若为INFINITE,则线程一直被挂起,

直到hHandle所指向的对象 变为有信号状态时为止。
  本例程调用该函数的作用是按下IDC_START按钮后,一直等到线程返回,再恢复IDC_START按钮正常状态。编译运行该例程并细心体会。
例程3 MultiThread3
传送一个结构体给一个线程函数也是可能的,可以通过传送一个指向结构体的指针参数来完成。先定义一个结构体:
typedef struct
{
int firstArgu,
long secondArgu,

}myType,*pMyType;
创建线程时CreateThread (NULL,0,threadFunc,pMyType,…);
在threadFunc函数内部,可以使用“强制转换”:
int intValue=((pMyType)lpvoid)->firstArgu;
long longValue=((pMyType)lpvoid)->seconddArgu;
……
例程3 MultiThread3将演示如何传送一个指向结构体的指针参数。
建立一个基于对话框的工程MultiThread3,在对话框IDD_MULTITHREAD3_DIALOG中加入一个编辑框IDC_MILLISECOND,一个按钮IDC_START,标题

为“开始”
,一个进度条IDC_PROGRESS1;
打开ClassWizard,为编辑框IDC_MILLISECOND添加int型变量m_nMilliSecond,为进度条IDC_PROGRESS1添加CProgressCtrl型变量

m_ctrlProgress;

在MultiThread3Dlg.h文件中添加一个结构的定义: struct threadInfo
{
UINT nMilliSecond;
CProgressCtrl* pctrlProgress;
};
线程函数的声明: UINT ThreadFunc(LPVOID lpParam);
注意,二者应在类CMultiThread3Dlg的外部。
在类CMultiThread3Dlg内部添加protected型变量: HANDLE hThread;
DWORD ThreadID;
分别代表线程的句柄和ID。
在MultiThread3Dlg.cpp文件中进行如下操作:
定义公共变量 threadInfo Info;
双击按钮IDC_START,添加相应消息处理函数:void CMultiThread3Dlg::OnStart()
{
// TODO: Add your control notification handler code here
UpdateData(TRUE);
Info.nMilliSecond=m_nMilliSecond;
Info.pctrlProgress=&m_ctrlProgress;
hThread=CreateThread (NULL,
0,
(LPTHREAD_START_ROUTINE)ThreadFunc,
&Info,
0,
&ThreadID);
/*
GetDlgItem(IDC_START)->EnableWindow(FALSE);
WaitForSingleObject(hThread,INFINITE);
GetDlgItem(IDC_START)->EnableWindow(TRUE);
*/
}
在函数BOOL CMultiThread3Dlg::OnInitDialog()中添加语句: {
……

// TODO: Add extra initialization here
m_ctrlProgress.SetRange(0,99);
m_nMilliSecond=10;
UpdateData(FALSE);
return TRUE; // return TRUE unless you set the focus to a control
}
添加线程处理函数:UINT ThreadFunc(LPVOID lpParam) {
threadInfo* pInfo=(threadInfo*)lpParam;
for(int i=0;i<100;i++)
{
int nTemp=pInfo->nMilliSecond;
pInfo->pctrlProgress->SetPos(i);
Sleep(nTemp);
}
return 0;
}
  顺便补充一点,如果你在void CMultiThread3Dlg::OnStart() 函数中添加/*
*/语句,编译运行你就会发现进度条不进行刷新,主线程也停止了反应。什么原因呢?这是因为WaitForSingleObject函数等待子线程

(ThreadFunc)结束时,导致了线程死锁。因为WaitForSingleObject函数会将主线程挂起(任何消息都得不到处理),而子线程ThreadFunc正

在设置进度条,一直在等待主线程将刷新消息处理完毕返回才会检测通知事件。这样两个线程都在互相等待,死锁发生了,编程时应注意避免

建立一个基于对话框的工程MultiThread4,在对话框IDD_MULTITHREAD4_DIALOG中加入一个按钮IDC_TEST和一个编辑框IDC_COUNT,按钮标题为

“测试”
, 编辑框属性选中Read-only;
在MultiThread4Dlg.cpp文件中进行如下操作:
添加公共变量volatile BOOL m_bRunFlag=TRUE;
该变量表示是否还能继续创建线程。
添加线程函数:
DWORD WINAPI threadFunc(LPVOID threadNum)
{
while(m_bRunFlag)
{
Sleep(3000);
}
return 0;
}
只要 m_bRunFlag 变量为TRUE,线程一直运行。
双击按钮IDC_TEST,添加其响应消息函数:void CMultiThread4Dlg::OnTest()
{
DWORD threadID;
GetDlgItem(IDC_TEST)->EnableWindow(FALSE);
long nCount=0;
while(m_bRunFlag)
{
if(CreateThread (NULL,0,threadFunc,NULL,0,&threadID)==NULL)
{
   m_bRunFlag=FALSE;
   break;
}
else
{
   nCount++;
}
}
   //不断创建线程,直到再不能创建为止
m_nCount=nCount;
UpdateData(FALSE);
Sleep(5000);
   //延时5秒,等待所有创建的线程结束
GetDlgItem(IDC_TEST)->EnableWindow(TRUE);
    m_bRunFlag=TRUE;
}
五、MFC对多线程编程的支持
  MFC中有两类线程,分别称之为工作者线程和用户界面线程。二者的主要区别在于工作者线程没有消息循环,而用户界面线程有自己的消息

队列和消息循环。
  工作者线程没有消息机制,通常用来执行后台计算和维护任务,如冗长的计算过程,打印机的后台打印等。用户界面线程一般用于处理独

立于其他线程执行之外的用户输入,响应用户及系统所产生的事件和消息等。但对于Win32的API编程而言,这两种线程是没有区别的,它们都

只需线程的启动地址即可启动线程来执行任务。
  在MFC中,一般用全局函数AfxBeginThread()来创建并初始化一个线程的运行,该函数有两种重载形式,分别用于创建工作者线程和用户界

面线程。两种重载函数原型和参数分别说明如下:

(1) CWinThread* AfxBeginThread(AFX_THREADPROC pfnThreadProc,
                      LPVOID pParam,
                      nPriority=THREAD_PRIORITY_NORMAL,
                      UINT nStackSize=0,
                      DWORD dwCreateFlags=0,
                      LPSECURITY_ATTRIBUTES lpSecurityAttrs=NULL);
PfnThreadProc:指向工作者线程的执行函数的指针,线程函数原型必须声明如下: UINT ExecutingFunction(LPVOID
pParam);
请注意,ExecutingFunction()应返回一个UINT类型的值,用以指明该函数结束的原因。一般情况下,返回0表明执行成功。
pParam:传递给线程函数的一个32位参数,执行函数将用某种方式解释该值。它可以是数值,或是指向一个结构的指针,甚至可以被忽略;
nPriority:线程的优先级。如果为0,则线程与其父线程具有相同的优先级;
nStackSize:线程为自己分配堆栈的大小,其单位为字节。如果nStackSize被设为0,则线程的堆栈被设置成与父线程堆栈相同大小;
dwCreateFlags:如果为0,则线程在创建后立刻开始执行。如果为CREATE_SUSPEND,则线程在创建后立刻被挂起;
lpSecurityAttrs:线程的安全属性指针,一般为NULL;
(2) CWinThread* AfxBeginThread(CRuntimeClass* pThreadClass,
                      int nPriority=THREAD_PRIORITY_NORMAL,
                      UINT nStackSize=0,
                      DWORD dwCreateFlags=0,
                      LPSECURITY_ATTRIBUTES lpSecurityAttrs=NULL);

  pThreadClass 是指向 CWinThread
的一个导出类的运行时类对象 的指针,该导出类定义了被创建的用户界面线程的启动、退出等;其它参数的意义同形式1。使用函数的这个原型

生成的线程也有消息机制,在以后的例子中我们将发现同主线程的机制几乎一样。
下面我们对CWinThread类的数据成员及常用函数进行简要说明。
m_hThread:当前线程的句柄;
m_nThreadID:当前线程的ID;
m_pMainWnd:指向应用程序主窗口的指针
BOOL CWinThread::CreateThread (DWORD dwCreateFlags=0,
UINT nStackSize=0,
LPSECURITY_ATTRIBUTES lpSecurityAttrs=NULL);
  该函数中的dwCreateFlags、nStackSize、lpSecurityAttrs参数和API函数CreateThread 中的对应参数有相同含义,该函数执行成功,返回

非0值,否则返回0。
  一般情况下,调用AfxBeginThread()来一次性地创建并启动一个线程,但是也可以通过两步法来创建线程:首先创建CWinThread类的一个

virtual BOOL CWinThread::InitInstance();
  重载该函数以控制用户界面线程实例的初始化。初始化成功则返回非0值,否则返回0。用户界面线程经常重载该函数,工作者线程一般不

使用InitInstance()。
virtual int CWinThread::ExitInstance();
  在线程终结前重载该函数进行一些必要的清理工作。该函数返回线程的退出码,0表示执行成功,非0值用来标识各种错误。同

InitInstance()成员函数一样,该函数也只适用于用户界面线程。

分享到:
评论

相关推荐

    47G 北风网 从C++起步到MFC实战VC++软件工程师高端培训(服务器端开发方向)332课全

    - **技术栈**:服务器端开发可能涉及的技术包括但不限于:网络编程(TCP/IP协议栈)、数据库交互、多线程编程、并发控制、安全认证等。 - **发展趋势**:随着云计算、大数据、人工智能等技术的发展,服务器端开发的...

    Win32多线程程序设计

    1.适合新手作为起步教程,解释清晰,起步要求低,很有价值(内部包含一个Win32多线程程序设计的源代码,书籍40M,无法上传); 2.以前下载的时候多半要下载到很多看不了,解压出错的东西,这次我将自己手里的资料...

    北风网 从C++起步到MFC实战VC++软件工程师高端培训(服务器端开发方向)332课全

    ### 北风网 C++起步到MCF实战VC++软件工程师高端培训(服务器端开发方向)332课全 #### 一、课程概述 本课程是一套针对C++语言及MFC框架的全方位学习资源,旨在帮助学员从零基础开始,逐步掌握C++编程技能,并通过...

    Windows编程循序渐进(清晰完整版)4

    ·第1章,软件开发起步:编写第一个软件,熟悉MFC应用程序框架。 ·第2章,对话框应用程序:熟悉模态、非模态对话框以及通常对话框的原理与使用方法。 ·第3章,基本控件:介绍按钮、编辑框、列表框等基本控件的...

    Windows编程循序渐进(清晰完整版)1

    ·第1章,软件开发起步:编写第一个软件,熟悉MFC应用程序框架。 ·第2章,对话框应用程序:熟悉模态、非模态对话框以及通常对话框的原理与使用方法。 ·第3章,基本控件:介绍按钮、编辑框、列表框等基本控件的...

    Windows编程循序渐进(清晰完整版)2

    ·第1章,软件开发起步:编写第一个软件,熟悉MFC应用程序框架。 ·第2章,对话框应用程序:熟悉模态、非模态对话框以及通常对话框的原理与使用方法。 ·第3章,基本控件:介绍按钮、编辑框、列表框等基本控件的...

    Windows编程循序渐进(清晰完整版)3

    ·第1章,软件开发起步:编写第一个软件,熟悉MFC应用程序框架。 ·第2章,对话框应用程序:熟悉模态、非模态对话框以及通常对话框的原理与使用方法。 ·第3章,基本控件:介绍按钮、编辑框、列表框等基本控件的...

    Windows编程循序渐进(清晰完整版)5

    ·第1章,软件开发起步:编写第一个软件,熟悉MFC应用程序框架。 ·第2章,对话框应用程序:熟悉模态、非模态对话框以及通常对话框的原理与使用方法。 ·第3章,基本控件:介绍按钮、编辑框、列表框等基本控件的...

    Windows编程循序渐进(清晰完整版)7

    ·第1章,软件开发起步:编写第一个软件,熟悉MFC应用程序框架。 ·第2章,对话框应用程序:熟悉模态、非模态对话框以及通常对话框的原理与使用方法。 ·第3章,基本控件:介绍按钮、编辑框、列表框等基本控件的...

    Windows编程循序渐进(清晰完整版)6

    ·第1章,软件开发起步:编写第一个软件,熟悉MFC应用程序框架。 ·第2章,对话框应用程序:熟悉模态、非模态对话框以及通常对话框的原理与使用方法。 ·第3章,基本控件:介绍按钮、编辑框、列表框等基本控件的...

    Windows编程循序渐进(清晰完整版)8

    ·第1章,软件开发起步:编写第一个软件,熟悉MFC应用程序框架。 ·第2章,对话框应用程序:熟悉模态、非模态对话框以及通常对话框的原理与使用方法。 ·第3章,基本控件:介绍按钮、编辑框、列表框等基本控件的...

    Windows编程循序渐进源码

     第1章,软件开发起步:编写第一个软件,熟悉MFC应用程序框架。  第2章,对话框应用程序:熟悉模态、非模态对话框,以及通常对话框的原理与使用方法。  第3章,基本控件:介绍按钮、编辑框、列表框等基本控件...

    Windows编程循序渐进.part2

    15.2.2 实例:多线程环境下的数据共享 278 15.3 内核对象与等待函数 280 15.3.1 内核对象 280 15.3.2 等待函数 281 15.4 事件内核对象 283 15.4.1 基本原理 283 15.4.2 实例:使用事件内核对象示例 284 15.5...

    Windows编程循序渐进.part3

    15.2.2 实例:多线程环境下的数据共享 278 15.3 内核对象与等待函数 280 15.3.1 内核对象 280 15.3.2 等待函数 281 15.4 事件内核对象 283 15.4.1 基本原理 283 15.4.2 实例:使用事件内核对象示例 284 15.5...

    工控机下AGV装配机器人控制系统设计方法分析.pdf

    工控机界面设计采用VC++语言,考虑到系统多线程性、封装性及实时性,设有包括速度参数设置、系统参数设置、轨迹参数设置、开始运行等6个功能模块。速度参数设置提供4档变速按钮以实现实时速度调节;系统参数设置能...

Global site tag (gtag.js) - Google Analytics