转自:http://blog.csdn.net/solstice/article/details/3066268
这是一篇比较情绪化的blog,中心思想是“继承就像一条贼船,上去就下不来了”,而借助boost::function和boost::bind,大多数情况下,你都不用上贼船。
boost::function和boost::bind已经纳入了std::tr1,这或许是C++0x最值得期待的功能,它将彻底改变C++库的设计方式,以及应用程序的编写方式。
Scott Meyers的Effective C++ 3rd ed.第35条款提到了以boost::function和boost:bind取代虚函数的做法,这里谈谈我自己使用的感受。
基本用途
boost::function就像C#里的delegate,可以指向任何函数,包括成员函数。当用bind把某个成员函数绑到某个对象上时,我们得到了一个closure(闭包)。例如:
class Foo
{
public:
void methodA();
void methodInt(int a);
};
class Bar
{
public:
void methodB();
};
boost::function<void()> f1; // 无参数,无返回值
Foo foo;
f1 = boost::bind(&Foo::methodA, &foo);
f1(); // 调用 foo.methodA();
Bar bar;
f1 = boost::bind(&Bar::methodB, &bar);
f1(); // 调用 bar.methodB();
f1 = boost::bind(&Foo::methodInt, &foo, 42);
f1(); // 调用 foo.methodInt(42);
boost::function<void(int)> f2; // int 参数,无返回值
f2 = boost::bind(&Foo::methodInt, &foo, _1);
f2(53); // 调用 foo.methodInt(53);
如果没有boost::bind,那么boost::function就什么都不是,而有了bind(),“同一个类的不同对象可以delegate给不同的实现,从而实现不同的行为”(myan语),简直就无敌了。
对程序库的影响
程序库的设计不应该给使用者带来不必要的限制(耦合),而继承是仅次于最强的一种耦合(最强耦合的是友元)。如果一个程序库限制其使用者必须从某个class派生,那么我觉得这是一个糟糕的设计。不巧的是,目前有些程序库就是这么做的。
例1:线程库
常规OO设计:
写一个Thread base class,含有(纯)虚函数 Thread#run(),然后应用程序派生一个继承class,覆写run()。程序里的每一种线程对应一个Thread的派生类。例如Java的Thread可以这么用。
缺点:如果一个class的三个method需要在三个不同的线程中执行,就得写helper class(es)并玩一些OO把戏。
基于closure的设计:
令Thread是一个具体类,其构造函数接受Callable对象。应用程序只需提供一个Callable对象,创建一份Thread实体,调用Thread#start()即可。Java的Thread也可以这么用,传入一个Runnable对象。C#的Thread只支持这一种用法,构造函数的参数是delegate ThreadStart。boost::thread也只支持这种用法。
// 一个基于 closure 的 Thread class 基本结构
class Thread
{
public:
typedef boost::function<void()> ThreadCallback;
Thread(ThreadCallback cb) : cb_(cb)
{ }
void start()
{
/* some magic to call run() in new created thread */
}
private:
void run()
{
cb_();
}
ThreadCallback cb_;
// ...
};
使用:
class Foo
{
public:
void runInThread();
};
Foo foo;
Thread thread(boost::bind(&Foo::runInThread, &foo));
thread.start();
例2:网络库
以boost::function作为桥梁,NetServer class对其使用者没有任何类型上的限制,只对成员函数的参数和返回类型有限制。使用者EchoService也完全不知道NetServer的存在,只要在main()里把两者装配到一起,程序就跑起来了。
// library
class Connection;
class NetServer : boost::noncopyable
{
public:
typedef boost::function<void (Connection*)> ConnectionCallback;
typedef boost::function<void (Connection*, const void*, int len)> MessageCallback;
NetServer(uint16_t port);
~NetServer();
void registerConnectionCallback(const ConnectionCallback&);
void registerMessageCallback(const MessageCallback&);
void sendMessage(Connection*, const void* buf, int len);
private:
// ...
};
// user
class EchoService
{
public:
typedef boost::function<void(Connection*, const void*, int)> SendMessageCallback; // 符合NetServer::sendMessage的原型
EchoService(const SendMessageCallback& sendMsgCb)
: sendMessageCb_(sendMsgCb)
{ }
void onMessage(Connection* conn, const void* buf, int size) // 符合NetServer::NetServer::MessageCallback的原型
{
printf("Received Msg from Connection %d: %.*s/n", conn->id(), size, (const char*)buf);
sendMessageCb_(conn, buf, size); // echo back
}
void onConnection(Connection* conn) // 符合NetServer::NetServer::ConnectionCallback的原型
{
printf("Connection from %s:%d is %s/n", conn->ipAddr(), conn->port(), conn->connected() ? "UP" : "DOWN");
}
private:
SendMessageCallback sendMessageCb_;
};
// 扮演上帝的角色,把各部件拼起来
int main()
{
NetServer server(7);
EchoService echo(bind(&NetServer::sendMessage, &server, _1, _2, _3));
server.registerMessageCallback(bind(&EchoService::onMessage, &echo, _1, _2, _3));
server.registerConnectionCallback(bind(&EchoService::onConnection, &echo, _1));
server.run();
}
对面向对象程序设计的影响
一直以来,我对面向对象有一种厌恶感,叠床架屋,绕来绕去的,一拳拳打在棉花上,不解决实际问题。面向对象三要素是封装、继承和多态。我认为封装是根本的,继承和多态则是可有可无。用class来表示concept,这是根本的;至于继承和多态,其耦合性太强,往往不划算。
继承和多态不仅规定了函数的名称、参数、返回类型,还规定了类的继承关系。在现代的OO编程语言里,借助反射和attribute/annotation,已经大大放宽了限制。举例来说,JUnit 3.x 是用反射,找出派生类里的名字符合 void test*() 的函数来执行,这里就没继承什么事,只是对函数的名称有部分限制(继承是全面限制,一字不差)。至于JUnit 4.x 和 NUnit 2.x 则更进一步,以annoatation/attribute来标明test case,更没继承什么事了。
我的猜测是,当初提出面向对象的时候,closure还没有一个通用的实现,所以它没能算作基本的抽象工具之一。现在既然closure已经这么方便了,或许我们应该重新审视面向对象设计,至少不要那么滥用继承。
自从找到了boost::function+boost::bind这对神兵利器,不用再考虑类直接的继承关系,只需要基于对象的设计(object-based),拳拳到肉,程序写起来顿时顺手了很多。
对面向对象设计模式的影响
既然虚函数能用closure代替,那么很多OO设计模式,尤其是行为模式,失去了存在的必要。另外,既然没有继承体系,那么创建型模式似乎也没啥用了。
最明显的是Strategy,不用累赘的Strategy基类和ConcreteStrategyA、ConcreteStrategyB等派生类,一个boost::function<>成员就解决问题。在《设计模式》这本书提到了23个模式,我认为iterator有用(或许再加个State),其他都在摆谱,拉虚架子,没啥用。或许它们解决了面向对象中的常见问题,不过要是我的程序里连面向对象(指继承和多态)都不用,那似乎也不用叨扰面向对象设计模式了。
或许closure-based programming将作为一种新的programming paradiam而流行起来。
依赖注入与单元测试
前面的EchoService可算是依赖注入的例子,EchoService需要一个什么东西来发送消息,它对这个“东西”的要求只是函数原型满足SendMessageCallback,而并不关系数据到底发到网络上还是发到控制台。在正常使用的时候,数据应该发给网络,而在做单元测试的时候,数据应该发给某个DataSink。
安照面向对象的思路,先写一个AbstractDataSink interface,包含sendMessage()这个虚函数,然后派生出两个classes:NetDataSink和MockDataSink,前面那个干活用,后面那个单元测试用。EchoService的构造函数应该以AbstractDataSink*为参数,这样就实现了所谓的接口与实现分离。
我认为这么做纯粹是脱了裤子放屁,直接传入一个SendMessageCallback对象就能解决问题。在单元测试的时候,可以boost::bind()到MockServer上,或某个全局函数上,完全不用继承和虚函数,也不会影响现有的设计。
什么时候使用继承?
如果是指OO中的public继承,即为了接口与实现分离,那么我只会在派生类的数目和功能完全确定的情况下使用。换句话说,不为将来的扩展考虑,这时候面向对象或许是一种不错的描述方法。一旦要考虑扩展,什么办法都没用,还不如把程序写简单点,将来好大改或重写。
如果是功能继承,那么我会考虑继承boost::noncopyable或boost::enable_shared_from_this,下一篇blog会讲到enable_shared_from_this在实现多线程安全的Signal/Slot时的妙用。
例如,IO-Multiplex在不同的操作系统下有不同的推荐实现,最通用的select(),POSIX的poll(),Linux的epoll(),FreeBSD的kqueue等等,数目固定,功能也完全确定,不用考虑扩展。那么设计一个NetLoop base class加若干具体classes就是不错的解决办法。
基于接口的设计
这个问题来自那个经典的讨论:不会飞的企鹅(Penguin)究竟应不应该继承自鸟(Bird),如果Bird定义了virtual function fly()的话。讨论的结果是,把具体的行为提出来,作为interface,比如Flyable(能飞的),Runnable(能跑的),然后让企鹅实现Runnable,麻雀实现Flyable和Runnable。(其实麻雀只能双脚跳,不能跑,这里不作深究。)
进一步的讨论表明,interface的粒度应足够小,或许包含一个method就够了,那么interface实际上退化成了给类型打的标签(tag)。在这种情况下,完全可以使用boost::function来代替,比如:
// 企鹅能游泳,也能跑
class Penguin
{
public:
void run();
void swim();
};
// 麻雀能飞,也能跑
class Sparrow
{
public:
void fly();
void run();
};
// 以 closure 作为接口
typedef boost::function<void()> FlyCallback;
typedef boost::function<void()> RunCallback;
typedef boost::function<void()> SwimCallback;
// 一个既用到run,也用到fly的客户class
class Foo
{
public:
Foo(FlyCallback flyCb, RunCallback runCb) : flyCb_(flyCb), runCb_(runCb)
{ }
private:
FlyCallback flyCb_;
RunCallback runCb_;
};
// 一个既用到run,也用到swim的客户class
class Bar
{
public:
Bar(SwimCallback swimCb, RunCallback runCb) : swimCb_(swimCb), runCb_(runCb)
{ }
private:
SwimCallback swimCb_;
RunCallback runCb_;
};
int main()
{
Sparrow s;
Penguin p;
// 装配起来,Foo要麻雀,Bar要企鹅。
Foo foo(bind(&Sparrow::fly, &s), bind(&Sparrow::run, &s));
Bar bar(bind(&Penguin::swim, &p), bind(&Penguin::run, &p));
}
实现Signal/Slot
boost::function + boost::bind 描述了一对一的回调,在项目中,我们借助boost::shared_ptr + boost::weak_ptr简洁地实现了多播(multi-cast),即一对多的回调,并且考虑了对象的生命期管理与多线程安全;并且,自然地,对使用者的类型不作任何限制,篇幅略长,留作下一篇blog吧。(boost::signals也实现了Signal/Slot,但可惜不是线程安全的。)
相关推荐
内容概要:本文详细介绍了基于SpringBoot和Vue开发的养老院管理系统的具体实现细节。该系统采用前后端不分离的架构,旨在快速迭代并满足中小项目的开发需求。文中涵盖了多个关键技术点,如数据库设计(组合唯一约束、触发器)、定时任务(@Scheduled、@Async)、前端数据绑定(Vue的条件渲染和动态class绑定)、权限控制(RBAC模型、自定义注解)以及报表导出(SXSSFWorkbook流式导出)。此外,还讨论了开发过程中遇到的一些常见问题及其解决方案,如CSRF防护、静态资源配置、表单提交冲突等。 适合人群:具备一定Java和前端开发经验的研发人员,尤其是对SpringBoot和Vue有一定了解的开发者。 使用场景及目标:适用于需要快速开发中小型管理系统的团队,帮助他们理解如何利用SpringBoot和Vue进行全栈开发,掌握前后端不分离架构的优势和注意事项。 其他说明:文章不仅提供了详细的代码示例和技术要点,还分享了许多实用的小技巧和避坑指南,有助于提高开发效率和系统稳定性。
家族企业如何应对人才流失问题?
员工关怀制度.doc
内容概要:本文详细探讨了对传统蚁群算法进行改进的方法,特别是在路径规划领域的应用。主要改进措施包括:采用排序搜索机制,即在每轮迭代后对所有路径按长度排序并只强化前20%的优质路径;调整信息素更新规则,如引入动态蒸发系数和分级强化策略;优化路径选择策略,增加排序权重因子;以及实现动态地图调整,使算法能够快速适应环境变化。实验结果显示,改进后的算法在收敛速度上有显著提升,在复杂地形中的表现更加稳健。 适合人群:从事路径规划研究的技术人员、算法工程师、科研工作者。 使用场景及目标:适用于需要高效路径规划的应用场景,如物流配送、机器人导航、自动驾驶等领域。目标是提高路径规划的效率和准确性,减少不必要的迂回路径,确保在动态环境中快速响应变化。 其他说明:改进后的蚁群算法不仅提高了收敛速度,还增强了对复杂环境的适应能力。建议在实际应用中结合可视化工具进行调参,以便更好地观察和优化蚂蚁的探索轨迹。此外,还需注意避免过度依赖排序机制而导致的过拟合问题。
内容概要:本文详细介绍了利用粒子群优化(PSO)算法解决配电网中分布式光伏系统的选址与定容问题的方法。首先阐述了问题背景,即在复杂的配电网环境中选择合适的光伏安装位置和确定合理的装机容量,以降低网损、减小电压偏差并提高光伏消纳效率。接着展示了具体的PSO算法实现流程,包括粒子初始化、适应度函数构建、粒子位置更新规则以及越界处理机制等关键技术细节。文中还讨论了目标函数的设计思路,将多个相互制约的目标如网损、电压偏差和光伏消纳通过加权方式整合为单一评价标准。此外,作者分享了一些实践经验,例如采用前推回代法进行快速潮流计算,针对特定应用场景调整权重系数,以及引入随机波动模型模拟光伏出力特性。最终实验结果显示,经过优化后的方案能够显著提升系统的整体性能。 适用人群:从事电力系统规划与设计的专业人士,尤其是那些需要处理分布式能源集成问题的研究人员和技术人员。 使用场景及目标:适用于希望深入了解如何运用智能优化算法解决实际工程难题的人士;旨在帮助读者掌握PSO算法的具体应用方法,从而更好地应对配电网中分布式光伏系统的选址定容挑战。 其他说明:文中提供了完整的Matlab源代码片段,便于读者理解和复现研究结果;同时也提到了一些潜在改进方向,鼓励进一步探索和创新。
内容概要:本文详细介绍了丰田Prius2004永磁同步电机的设计流程,涵盖从初始参数计算到最终温升仿真的各个环节。首先利用Excel进行基本参数计算,如铁芯叠厚、定子外径等,确保设计符合预期性能。接着使用Maxwell进行参数化仿真,通过Python脚本自动化调整磁钢尺寸和其他关键参数,优化电机性能并减少齿槽转矩。随后借助橡树岭实验室提供的实测数据验证仿真结果,确保模型准确性。最后采用MotorCAD进行温升仿真,优化冷却系统设计,确保电机运行安全可靠。文中还分享了许多实用技巧,如如何正确设置材料参数、避免常见的仿真错误等。 适合人群:从事电机设计的专业工程师和技术人员,尤其是对永磁同步电机设计感兴趣的读者。 使用场景及目标:适用于希望深入了解永磁同步电机设计全过程的技术人员,帮助他们在实际工作中提高设计效率和精度,解决常见问题,优化设计方案。 其他说明:文章提供了丰富的实战经验和具体的操作步骤,强调了理论与实践相结合的重要性。同时提醒读者注意一些容易忽视的细节,如材料参数的选择和仿真模型的准确性。
内容概要:本文详细介绍了基于DSP28335的单相逆变器的设计与实现,涵盖了多个关键技术模块。首先,ADC采样模块用于获取输入电压和电流的数据,确保后续控制的准确性。接着,PWM控制模块负责生成精确的脉宽调制信号,控制逆变器的工作状态。液晶显示模块则用于实时展示电压、电流等重要参数。单相锁相环电路实现了电网电压的频率和相位同步,确保逆变器输出的稳定性。最后,电路保护程序提供了过流保护等功能,保障系统的安全性。每个模块都有详细的代码示例和技术要点解析。 适合人群:具备一定嵌入式系统和电力电子基础知识的研发人员,尤其是对DSP28335感兴趣的工程师。 使用场景及目标:适用于单相逆变器项目的开发,帮助开发者理解和掌握各个模块的具体实现方法,提高系统的可靠性和性能。 其他说明:文中不仅提供了具体的代码实现,还分享了许多调试经验和常见问题的解决方案,有助于读者更好地理解和应用相关技术。
SecureCRT安装包
内容概要:本文详细介绍了如何利用C#、WPF和MVVM模式构建一个大屏看板3D可视化系统。主要内容涵盖WPF编程设计、自定义工业控件、数据库设计、MVVM架构应用以及典型的三层架构设计。文中不仅提供了具体的代码实例,还讨论了数据库连接配置、3D模型绑定、依赖属性注册等关键技术细节。此外,文章强调了项目开发过程中需要注意的问题,如3D坐标系换算、MVVM中命令传递、数据库连接字符串加密等。 适合人群:具备一定C#编程基础,对WPF和MVVM模式有一定了解的研发人员。 使用场景及目标:适用于希望深入了解WPF和MVVM模式在实际项目中应用的开发者,特别是那些从事工业控制系统、数据可视化平台开发的专业人士。通过学习本文,读者可以掌握如何构建高效、稳定的大屏看板3D可视化系统。 其他说明:本文提供的设计方案和技术实现方式,可以帮助开发者更好地理解和应用WPF和MVVM模式,同时也能为相关领域的项目开发提供有价值的参考。
基于ssm的系统设计,包含sql文件(Spring+SpringMVC+MyBatis)
内容概要:本文详细介绍了利用COMSOL进行非厄米超表面双参数传感器的设计与实现。首先,通过构建超表面单元并引入虚部折射率,实现了PT对称系统的增益-损耗交替分布。接着,通过频域扫描和参数化扫描,捕捉到了复频率空间中的能级劈裂现象,并找到了奇异点(Exceptional Point),从而显著提高了传感器对微小扰动的敏感度。此外,文章探讨了双参数检测的独特优势,如解耦温度和折射率变化的能力,并展示了其在病毒检测、工业流程监控等领域的潜在应用。 适合人群:从事光学传感器研究的专业人士,尤其是对非厄米系统和COMSOL仿真感兴趣的科研人员。 使用场景及目标:适用于需要高精度、多参数检测的应用场合,如生物医学检测、环境监测等。目标是提高传感器的灵敏度和分辨率,解决传统传感器中存在的参数交叉敏感问题。 其他说明:文中提供了详细的建模步骤和代码片段,帮助读者理解和重现实验结果。同时,强调了在建模过程中需要注意的关键技术和常见问题,如网格划分、参数设置等。
怎样健全员工福利体系.docx
离职证明范本.doc
6538b79724855900a9c930904a302920.part6
员工离职单.doc
内容概要:本文详细介绍了在COMSOL中进行超材料异常折射仿真的关键技术。首先解释了异常折射现象及其产生的原因,接着通过具体代码展示了如何利用相位梯度和结构色散精确计算折射角。文中还讨论了边界条件的设置、网格划分的优化以及参数化扫描的应用。此外,提供了多个实用脚本和技巧,帮助提高仿真的精度和效率。最后强调了验证结果的重要性和一些常见的注意事项。 适合人群:从事电磁仿真研究的专业人士,尤其是对超材料和异常折射感兴趣的科研人员和技术开发者。 使用场景及目标:适用于需要深入理解和解决超材料中异常折射问题的研究项目。主要目标是掌握COMSOL中异常折射仿真的完整流程,确保仿真结果的准确性并优化计算性能。 其他说明:文章不仅提供了详细的代码示例和技术细节,还分享了许多实践经验,有助于读者更好地应对实际仿真过程中可能出现的问题。
招聘工作数据分析表.xls
platform-tools-latest-windows.zip
个人资料临时存储QT资源
内容概要:本文详细介绍了微电网中三相交流下垂控制的工作原理和技术细节。首先,通过Matlab/Simulink搭建模型,展示了传统阻感型线路下垂特性的实现方法,特别是有功-频率和无功-电压下垂曲线的解析。文中强调了关键参数Kp和Kq的选择及其对系统稳定性的影响,并通过具体的仿真案例展示了不同参数设置下的动态响应。此外,文章讨论了波形分析中的注意事项,如谐波成分、滤波器设计以及虚拟阻抗的应用。最后,通过Python和C语言实现了下垂控制器的代码示例,进一步解释了实际工程中的实现细节。 适合人群:从事微电网研究和开发的技术人员,尤其是对下垂控制感兴趣的电气工程师和研究人员。 使用场景及目标:适用于希望深入了解微电网下垂控制原理及其实际应用的研究人员和技术人员。目标是帮助读者掌握下垂控制的核心概念和技术实现,提高在实际工程项目中的调试和优化能力。 其他说明:文章不仅提供了理论分析,还包括了大量的仿真代码和波形图,使读者能够更好地理解和验证所学内容。同时,文中提到的实际调试经验和常见错误也为初学者提供了宝贵的指导。