摘自《Data Mining - Concepts and Techniques》
Fromthe architecture point of view, there are three data warehouse models: the enterprise warehouse, the data mart, and the virtual warehouse.
Enterprise warehouse: An enterprise warehouse collects all of the information about subjects spanning the entire organization. It provides corporate-wide data integration, usually from one or more operational systems or external information providers, and is cross-functional in scope. It typically contains detailed data as well as summarized data, and can range in size from a few gigabytes to hundreds of gigabytes, terabytes, or beyond. An enterprise data warehouse may be implemented on traditional mainframes, computer superservers, or parallel architecture platforms. It requires extensive business modeling and may take years to design and build.
Data mart: A data mart contains a subset of corporate-wide data that is of value to a specific group of users. The scope is confined to specific selected subjects. For example, a marketing data mart may confine its subjects to customer, item, and sales. The data contained in data marts tend to be summarized. Data marts are usually implemented on low-cost departmental servers that are UNIX/LINUX- or Windows-based. The implementation cycle of a data mart is more likely to be measured in weeks rather than months or years. However, it
may involve complex integration in the long run if its design and planning were
not enterprise-wide. Depending on the source of data, data marts can be categorized as independent or dependent. Independent data marts are sourced fromdata captured fromone or more operational systems or external information providers, or fromdata generated locally within a particular department or geographic area. Dependent data marts are sourced directly from enterprise data warehouses.
Virtual warehouse: A virtual warehouse is a set of views over operational databases. For efficient query processing, only some of the possible summary views may be materialized. A virtual warehouse is easy to build but requires excess capacity on operational database servers.
分享到:
相关推荐
本文档标题《Agile-Data-Warehouse-Design-From-Business-Models-to-BI-Models.pdf》直译为《敏捷数据仓库设计:从业务模型到BI模型》,表明这是一份关于数据仓库设计的资料,着重讲解如何从理解企业业务模型出发,...
- **数据保险库模型(Data Vault Model)**:侧重于灵活性和可追溯性,适合处理历史数据和审计需求。 - **维度模型(Dimensional Model)**:采用星型模式或雪花模式,简化查询复杂度,提高性能。 #### 关键数据...
Exploring a Data Warehouse Exploring a data model After completing this module, students will be able to: Describe BI scenarios, trends, and project roles. Describe the products that make up the...
【标题】"IBM_banking_data_warehouse_GIMv85_Documentation_warehouse_" 指的是IBM的银行数据仓库解决方案的文档集,版本为GIMv85。这个标题揭示了该压缩包包含了关于IBM如何利用其技术构建和管理银行行业的数据...
multidimensional data models typical of OLAP; front end client tools for querying and data analysis; server extensions for efficient query processing; and tools for metadata management and for ...
This book starts with designing a data warehouse with dimensional modeling, and then looks at creating data models based on SSAS multidimensional and Tabular technologies. It will illustrate how to ...
models available with the Netezza TwinFin® and Skimmer® families of data warehouse and analytical appliances. If you are a new user of a Netezza appliance, or you are familiar with an older Netezza ...
1 Reviewing Data Warehouse Basics 2 Defining the Business and Logical Models 3 Creating the Dimensional Model 4 Creating the Physical Model 5 Storage Considerations for the Physical Model 6 Strategies...
3. **建模**:建模是BW/4HANA的核心部分,手册会详细解释InfoCubes、DWB (Data Warehouse Builder)、Open Hub Destination、CompositeProviders、Query Models等建模工具和技术。用户可以学习如何设计和实现符合业务...
1. 数据模型(Data Models):使用TypeScript的接口(Interfaces)定义仓库中的货物、库存等对象的数据结构。这有助于确保数据的一致性和正确性。 2. 存储模块(Storage Module):可能包含了数据库连接、CRUD操作...
#### 第八章至第十章:架构(Introducing Data Warehouse Architecture / Back Room Technical Architecture / Architecture for the Front Room) - **主要内容**:这些章节涵盖了数据仓库的架构设计,包括技术...
Emerging Trends in the Enterprise Data Analytics: Connecting Hadoop and DB2 Warehouse (Page 1161) Fatma Özcan (IBM Almaden Research Center) David Hoa (Silicon Valley Lab) Kevin S. Beyer (IBM Almaden ...
2. **Query Design基础**:理解查询设计的基本概念,包括InfoObjects、Datasources、InfoProviders和Query Models。InfoObjects代表业务对象,Datasources连接到外部数据源,InfoProviders处理和存储数据,Query ...
**MX for Data Models** 提供了高级数据建模功能,可以帮助用户设计和优化数据模型。 综上所述,Informatica PowerCenter V7.1.2提供了丰富的功能特性,不仅涵盖了数据集成的基本需求,还提供了高级的数据管理和...
对于压缩包`data-warehouse-master`,可能包含了一个完整的数据仓库项目示例,可能包括以下部分: - `ETL`目录:包含提取数据、转换数据和加载数据的脚本,可能是用JavaScript编写的。 - `models`目录:定义了数据...
These objects and data are used rem in several Oracle classes and demonstration files. rem rem MODIFIED (MM/DD/YY) rem slari 06/27/00 - b1138912: remove duplicate contents rem mjaeger 07/14/99 - bug ...
本项目“PersonAPI”是专门为PDW(Personal Data Warehouse)设计的一个REST项目,它利用Go语言的强大功能,结合HTTP协议和RESTful设计原则,为开发者提供了一个高效的数据接口。 ### Go语言基础 Go语言,又称为...