`

hdu3710(树链剖分计算lca)

阅读更多

突然发现剖分树可以在log(n)的时间里求出lca,于是又删了几十行的代码。

#include <iostream>
#include <stdio.h>
#include <vector>
#include <algorithm>
#include <ctime>
using namespace std;
const int N = 20005;
const int M = 100005;
const int QN = M;
const int INF = 0X7FFFFFFF;
typedef int vType;
typedef pair<int, int> pii;
#define mkpii make_pair<int, int>
struct e{
    int v;
    e* nxt;
}es[N<<1], *fir[N];
struct node{
    int ls, rs; //左右儿子的下标,为-1表示空
    int l, r;   //区间的左右标号
    //数据域
    int id;  //如果这个是叶子节点,id表示代表原树中的节点的标号
    vType Min;  //Min为这一整段插入的一个最小值
    int mid() { return (l + r) >> 1;  }
}nodes[N<<1];
struct se{
    pii e;
    int len;
}ses[M<<1], lea[M<<1];
int n, en, qn, m;
vector<pii> qlca[N];
vector<se> nes[N];
int par[N], fa[N]; //par[i]为i的直接前驱, fa用于并查集;
int  ln, cnt; //ln为链的数目,cnt为剖分树中节点的数目
int leaNum;
int  sons[N], que[N], dep[N], id[N], st[N], ed[N], root[N], top[N], sNum[N];
//sons[i]表示i为根的子树的大小,dep[i]表示节点的i的深度,id[i]为i所在链的标号,st和ed记录每条链的左右标号,root记录每条链的根节点的下标
//top[i]为第i条链的顶部节点,sNum[i]表示i的直接后继的个数
int ith[N], pMin[N], seg[N]; //ith[i]表示节点i是其父节点的第ith[i]个儿子(按访问顺序),
//seg在链上构建线段树的时候使用
vType iw[N];  //iw[i]表示节点i在最小生成树中与其他节点之间的边的权值的总和
int tr;  //最小生成树的根节点
inline void add_e(int u, int v){
    es[en].v = v;
    es[en].nxt = fir[u];
    fir[u] = &es[en++];
}
inline void newNode(int& id, int l, int r){
    nodes[cnt].ls = nodes[cnt].rs = -1;
    nodes[cnt].l = l;
    nodes[cnt].r = r;
    nodes[cnt].Min = INF;
    id = cnt++;
}
void build(int& id, int l, int r){ //在剖分出来的链上构建线段树
    newNode(id, l, r);
    if(l >= r){
        nodes[id].id = seg[l];
        return ;
    }
    int mid = (l+r)>>1;
    build(nodes[id].ls, l, mid);
    build(nodes[id].rs, mid+1, r);
}
void initTree(){  //初始化剖分树
    //确定父亲
    int l, r, u, v, i;
    e* cur;
    l = r = 0;
    que[r++] = tr;
    par[tr] = -1;
    dep[tr] = 0;
    while(l != r){
        u = que[l++];
        int g = 1;
        for(cur = fir[u]; cur; cur = cur->nxt){
            if((v = cur->v) != par[u]){
                que[r++] = v;
                par[v] = u;
                dep[v] = dep[u]+1;
                ith[v] = g++;
            }
        }
    }
    //计算子树大小
    for(i = 1; i <= n; i++){
        sons[i] = 1;
        sNum[i] = 0;
        id[i] = -1;
    }
    for(i = r-1; i >= 0; i--){
        u = que[i];
        if(par[u] >= 0){
            sons[par[u]] += sons[u];
            sNum[par[u]]++;
        }
    }
    //剖分链
    l = r = 0;
    que[r++] = tr;
    ln = cnt = 0;
    while(l != r){
        u = que[l++];
        st[ln] = dep[u]; //用节点的深度作为线段树中区间的左右标号
        top[ln] = u;
        while(u >= 0){
            id[u] = ln;
            ed[ln] = dep[u];
            seg[dep[u]] = u;
            int best;
            for(cur = fir[u], best=-1; cur; cur = cur->nxt){
                if(id[v = cur->v] == -1){
                    if(best == -1 || (best >= 0 && sons[v] > sons[best])){
                        best = v;
                    }
                }
            }
            if(best >= 0){
                for(cur = fir[u]; cur; cur = cur->nxt){
                    if(id[v = cur->v] == -1 && best != v){
                        que[r++] = v;
                    }
                }
            }
            u = best;
        }
        root[ln] = -1;
        build(root[ln], st[ln], ed[ln]);
        ln++;
    }
}
int qrylKthFar(int& id, int i, int k){
    //在链上查询i的第k个父节点(第0个为自己)
    if(nodes[id].l == nodes[id].r) return nodes[id].id;
    int mid = nodes[id].mid();
    if(i - mid - 1 >= k) return qrylKthFar(nodes[id].rs, i, k);
    else return qrylKthFar(nodes[id].ls, i, k);
}
int qryKthFar(int i, int k){
    //查询i的第k个父节点(第0个为自己)
    int u = i, ri;
    while(true){
        ri = id[u];
        if(dep[u] - st[ri] >= k){
            return qrylKthFar(root[ri], dep[u], k);
        }else{
            k -= dep[u] - st[ri] + 1;
            u = par[top[ri]];
        }
    }
}
void inslMin(int& id, int ql, int qr, int mv){
    if(id == -1) return ;
    if(ql <= nodes[id].l && nodes[id].r <= qr){
        if(nodes[id].Min > mv){
            nodes[id].Min = mv;
        }
        return;
    }
    if(nodes[id].l == nodes[id].r) return;
    int mid = nodes[id].mid();
    if(ql <= mid){
        inslMin(nodes[id].ls, ql, qr, mv);
    }
    if(qr > mid){
        inslMin(nodes[id].rs, ql, qr, mv);
    }
}
void insMin(int i, int k, vType mv){  //在节点i和i的第k个父节点之间插入mv
    int b, u;
    u = i;
    while(true){
        b = id[u];
        if(dep[u]-st[b] >= k){
            inslMin(root[b], dep[u]-k, dep[u], mv);
            return;
        }else{
            inslMin(root[b], st[b], dep[u], mv);
            k -= dep[u] - st[b] + 1;
            u = par[top[b]];
        }
    }
}


bool input(){
    scanf("%d%d", &n, &m);
    int i, k, tn;
    for(i = tn = 0; i < m; i++){
        scanf("%d%d%d%d", &ses[i].e.first, &ses[i].e.second, &ses[i].len, &k);
        if(k == 1){  //既然这条边还在使用,可以把它的边权设为0
            ses[i].len = 0;
        }
        if(ses[i].e.first != ses[i].e.second){
            tn++;
        }
    }
    m = tn;
    return true;
}


inline bool cmp(se a, se b){
    return a.len < b.len;
}
int findFa(int u){
    int k = u;
    while(k != fa[k]) k = fa[k];
    while(u != k){
        int tf = fa[u];
        fa[u] = k;
        u = tf;
    }
    return k;
}
void merge(int u, int v){
    int fu, fv;
    fu = findFa(u);
    fv = findFa(v);
    fa[fu] = fv;
}
int kruskal(int n, int m, int& leaNum, bool flag){ //flag为true表示需要构图
    int i, ans, k, u, v;
    for(i = 1; i <= n; i++){
        fa[i] = i;
    }
    if(flag){
        for(i = 1; i <= n; i++){
            iw[i] = 0;
            fir[i] = NULL;
        }
        en = leaNum = 0;
    }
    sort(ses, ses + m, cmp);
    for(i = ans = 0, k = 1; k < n && i < m; i++){
        u = ses[i].e.first;
        v = ses[i].e.second;
        if(findFa(u) != findFa(v)){
            ans += ses[i].len;
            k++;
            merge(u, v);
            if(flag){
                add_e(u, v);
                add_e(v, u);
                iw[u] += ses[i].len;
                iw[v] += ses[i].len;
            }
        }else if(flag){ //这条边被剩出来
            lea[leaNum++] = ses[i];
        }
    }
    if (flag) {
        for (; i < m; i++) {
            lea[leaNum++] = ses[i];
        }
    }
    if(k < n) ans = INF;
    return ans;
}


void handlelca(int u, int v, int anc, int len){
    if(u != anc && v != anc){
        int ku, kv;
        ku = qryKthFar(u, dep[u] - dep[anc] - 1);
        kv = qryKthFar(v, dep[v] - dep[anc] - 1);
        se te;
        te.e.first = ith[ku];
        te.e.second = ith[kv];
        te.len = len;
        nes[anc].push_back(te);
    }
    if(dep[anc] + 2 <= dep[u]){
        insMin(u, dep[u] - dep[anc] - 2, len);
    }
    if(dep[anc] + 2 <= dep[v]){
        insMin(v, dep[v] - dep[anc] - 2, len);
    }
}
//qn为查询lca的次数,qs记录查询lca的两个几点,anc记录每次查询的结果
int getlca(int u, int v){
while(id[u] != id[v]){
if(id[u] < id[v]) swap(u, v);
u = par[top[id[u]]];
}
if(dep[u] < dep[v]) swap(u, v);
return v;
}
void lca(se* qs, int qn){
int i;
for(i = 1; i <= n; i++){
nes[i].clear();
}
for(i = 0; i < qn; i++){
int u, v, anc;
u = qs[i].e.first;
v = qs[i].e.second;
anc = getlca(u, v);
handlelca(v, u, anc, qs[i].len);
}
}
void getpMin(int& id, int mv){
    if(mv > nodes[id].Min){
        mv = nodes[id].Min;
    }
    if(nodes[id].l == nodes[id].r){
        pMin[nodes[id].id] = mv;
        return;
    }
    getpMin(nodes[id].ls, mv);
    getpMin(nodes[id].rs, mv);
}
void getpMin(){
    int i;
    for(i = 0; i < ln; i++){
        getpMin(root[i], INF);
    }
}
void solve(){
    tr = 1; //设置根节点
    int sum, i, sn, v, num;
    e* cur;
    sum = kruskal(n, m, leaNum, true);
    initTree();
    lca(lea, leaNum);
    getpMin();
    for(i = 1; i <= n; i++){
        num = 0;
        sn = sNum[i];
        if (par[i] >= 1) {
            sn++;
            for (cur = fir[i]; cur; cur = cur->nxt) {
                if ((v = cur->v) != par[i] && pMin[v] < INF) {
                    ses[num].e.first = sn;
                    ses[num].e.second = ith[v];
                    ses[num].len = pMin[v];
                    num++;
                }
            }
        }
        int size = nes[i].size(), j;
        for(j = 0; j < size; j++){
            ses[num++] = nes[i][j];
        }
        int ans = kruskal(sn, num, leaNum, false);
        if(ans < INF){
            ans += sum - iw[i];
            printf("%d\n", ans);
        }else{
            printf("inf\n");
        }
    }
}
int main() {
    int t;
    scanf("%d", &t);
    while(t--){
        input();
        solve();
    }
    return 0;
}
 
分享到:
评论

相关推荐

    ACM hdu 线段树题目+源代码

    ACM hdu 线段树题目+源代码 线段树是一种非常重要的数据结构,它广泛应用于算法竞赛和实际编程中。今天,我们将通过 ACM hdu 的几个题目来学习和掌握线段树的基本概念和应用。 线段树的基本概念 线段树是一种...

    hdu acm1166线段树

    hdu 1166线段树代码

    二叉搜索树练习 HDU3791

    总结来说,"二叉搜索树练习 HDU3791"是一道关于二叉搜索树操作的编程题,可能需要实现插入、删除、查找等基本操作,并通过分析`Main.java`源码来理解和解决问题。同时,可能需要借助各种工具进行调试和测试,以确保...

    hdu 1166线段树

    标题与描述均提到了“hdu 1166线段树”,这表明文章的核心是关于线段树在解决特定问题中的应用。线段树是一种数据结构,主要用于处理区间查询和更新操作,尤其是在大规模数据集上。在本例中,通过分析给定的部分代码...

    hdu.rar_hdu

    3. **数据结构**:数组、链表、栈、队列、树(二叉树、平衡树如AVL和红黑树)、图(邻接矩阵、邻接表、最小生成树、拓扑排序等)。 4. **字符串处理**:KMP算法、Manacher's Algorithm、Rabin-Karp算法等。 5. **...

    HDU题目java实现

    8. **图论与树**:HDU题目中可能涉及图的遍历(深度优先搜索DFS、广度优先搜索BFS)、树的遍历(前序、中序、后序)以及最小生成树、最短路径等算法。 9. **动态规划**:这是一种优化策略,通过构建状态转移方程来...

    HDU_2010.rar_hdu 2010_hdu 20_hdu acm20

    【标题】"HDU_2010.rar"是一个压缩包文件,其中包含了与"HDU 2010"相关的资源,特别是针对"HDU ACM20"比赛的编程题目。"hdu 2010"和"hdu 20"可能是该比赛的不同简称或分类,而"hdu acm20"可能指的是该赛事的第20届...

    hdu.rar_HDU 1089.cpp_OJ题求和_hdu_horsekw5_杭电obj

    【标题】"hdu.rar_HDU 1089.cpp_OJ题求和_hdu_horsekw5_杭电obj" 提供的信息是关于一个压缩文件,其中包含了一个名为 "HDU 1089.cpp" 的源代码文件,这个文件是为了解决杭州电子科技大学(Hangzhou Dianzi ...

    hdu1250高精度加法

    ### hdu1250高精度加法 #### 背景介绍 在计算机科学与编程竞赛中,处理大整数运算(特别是加法、减法、乘法等)是常见的需求之一。当数字的位数超过了标准数据类型(如`int`、`long`等)所能表示的最大值时,就需要...

    hdu 300+ AC 代码

    在这个压缩包中,你可以找到涉及大数计算、线段树、字符串处理和动态规划等多个关键领域的算法实现。 首先,让我们深入了解一下这些知识点: 1. **大数计算**:在计算机科学中,大数是指超出普通整型或浮点型数据...

    ACM HDU题目分类

    ACM HDU 题目分类 ACM HDU 题目分类是指对 HDU 在线判题系统中题目的分类,总结了大约十来个分类。这些分类将有助于编程选手更好地理解和解决问题。 DP 问题 DP(Dynamic Programming,动态规划)是一种非常重要...

    HDU DP动态规划

    动态规划通常用于优化多阶段决策过程,通过将问题分解为更小的子问题并存储子问题的解来避免重复计算,从而提高效率。 【描述】提到的"HDU的一题"可能是指HDU(杭州电子科技大学)在线判题系统中的一道动态规划题目...

    hdu动态规划算法集锦

    根据提供的信息,我们可以总结出以下关于“hdu动态规划算法集锦”的知识点: ### 动态规划基础概念 动态规划是一种解决多阶段决策问题的方法,它通过将原问题分解为互相重叠的子问题,利用子问题的解来构建原问题...

    HDU杭电 计算机网络实验报告

    这份"HDU杭电 计算机网络实验报告"压缩包提供了丰富的实验材料,涵盖了多个关键的网络技术,包括交换机配置、路由协议、地址转换(NAT)、访问控制列表(ACL)以及动态主机配置协议(DHCP)等。以下是这些实验报告所...

    ACM HDU

    【ACM HDU】指的是在ACM(国际大学生程序设计竞赛,International Collegiate Programming Contest)中,参赛者在杭州电子科技大学(Hangzhou Dianzi University,简称HDU)的在线评测系统上完成并已解决的题目集合...

    杭电ACMhdu1163

    2. **数据结构**:常用的数据结构包括数组、链表、栈、队列、树(二叉树、平衡树如AVL和红黑树)、图等,对于不同的问题,选择合适的数据结构能有效提高解题效率。 3. **字符串处理**:杭电ACM中的题目可能涉及到...

    HDU1059的代码

    HDU1059的代码

    计算几何 算法几何 程序

    压缩包中的"HDUACM2010版_07)计算几何基础.ppt"很可能是一个讲座或教程的幻灯片,可能涵盖了计算几何的基本概念、核心算法以及一些经典问题的解决方案。对于初学者,这是一个很好的起点,可以深入理解计算几何的...

    HDU图论题目分类

    HDU图论题目分类 HDU图论题目分类是指在杭州电子科技大学(Hangzhou Dianzi University)的判题平台HDU OJ(Online Judge)上收录的一系列图论题目的分类。本分类涵盖了图论领域的多种类型的题目,涉及到图论的基本...

    HDU acm-PPT课件

    【ACM入门与提高:HDU ACM竞赛课程详解】 ACM(国际大学生程序设计竞赛,International Collegiate Programming Contest,简称ICPC或ACM/ICPC)是一项全球性的竞赛,旨在激发大学生对计算机科学的兴趣,提升他们的...

Global site tag (gtag.js) - Google Analytics