书接上回
上回说道LEO盗梦,宿主抛出了Exception,LEO早有应对,逃脱了。
LEO审视自己的类,发现所有的盗梦行为中,都需要在睡梦之前做准备@before,梦醒之后逃脱@after。那么是不是可以把这两个方法合一呢。
这里我们用到@Around,这个代码貌似应该这么写
伪代码
before应该做的事情
宿主的业务
after应该做的事情
我们知道在编织waving的时候,我们用了@before和@after来表示方法在宿主运行之前还是之后。使用Spring是没有显式调用的,也就是说我们不能直接调用业务方法。这里我们用到的是ProceedingJoinPoint。
这里稍微先说说JointPoint,我不习惯大段列举名词的介绍方法,我们的原则是用到什么讲什么。
JointPoint意思是连接点,就是业务代码和Aspect代码的交汇点。在电影里,就是你做你的梦,LEO跑到你的梦里的特定方法中。一般来说连接点主要是只宿主的方法。
剩下的就好办了,ProceedingJointPoint就是指被切面切入的方法。
这里直接上代码
1、LEOIncept
package com.spring.aop;
import java.lang.reflect.Method;
import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.After;
import org.aspectj.lang.annotation.AfterReturning;
import org.aspectj.lang.annotation.AfterThrowing;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.aop.AfterReturningAdvice;
import org.springframework.stereotype.Component;
@Aspect
@Component
public class LeoIncept{
@Pointcut("execution(public void com.spring.service.Person.haveSleep())")
public void myPointcut(){}
@Around("myPointcut()")
public void stealPassword(ProceedingJoinPoint pjp) throws Throwable {
System.out.println(this.getClass().getName());
System.out.println("快要睡觉了");
pjp.proceed();
System.out.println(this.getClass().getName());
System.out.println("醒了,撤退");
}
}
与before和after不同的是,首先我要声明一个pointcut叫做myPointcut方法,myPointcut()方法里面是不需要写代码的,写了也不会执行,Spring只是用到了myPointcut()方法的方法名而已。之后的@Around是利用了myPointcut()的名字,表示切入点@Pointcut("execution(public void com.spring.service.Person.haveSleep())")这里。
pjp.proceed()是用于表示业务代码,在这里就是haveSleep()方法。
2、修改Person方法
package com.spring.service;
import org.springframework.stereotype.Component;
@Component
public class Person {
public void haveSleep()
{
System.out.println(this.getClass().getName());
System.out.println("睡觉了");
}
}
3、测试代码
package com.spring.service.test;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import com.spring.service.Person;
public class PersonTest {
public static void main(String[] args) {
// TODO Auto-generated method stub
ApplicationContext ctx = new ClassPathXmlApplicationContext("springbeans.xml");
Person person = (Person) ctx.getBean("person");
person.haveSleep();
}
}
测试结果
com.spring.aop.LeoIncept
快要睡觉了
com.spring.service.Person
睡觉了
com.spring.aop.LeoIncept
醒了,撤退
分享到:
相关推荐
通过阅读《Spring AOP盗梦空间之二——获得返回值AfterReturnning》这篇博文(链接:https://garrincha.iteye.com/blog/2111779),你可以获得更详细的实践指导和示例代码。同时,结合提供的压缩包文件"Spring_AOP_...
Spring AOP支持五种通知类型:前置通知(Before)、后置通知(After)、返回通知(After Returning)、异常通知(After Throwing)和环绕通知(Around)。 `AfterThrowing`通知在方法抛出异常时执行,它允许我们在...
内容概要:本文档《数据结构》(02331)第一章主要介绍数据结构的基础概念,涵盖数据与数据元素的定义及其特性,详细阐述了数据结构的三大要素:逻辑结构、存储结构和数据运算。逻辑结构分为线性结构(如线性表、栈、队列)、树形结构(涉及根节点、父节点、子节点等术语)和其他结构。存储结构对比了顺序存储和链式存储的特点,包括访问方式、插入删除操作的时间复杂度以及空间分配方式,并介绍了索引存储和散列存储的概念。最后讲解了抽象数据类型(ADT)的定义及其组成部分,并探讨了算法分析中的时间复杂度计算方法。 适合人群:计算机相关专业学生或初学者,对数据结构有一定兴趣并希望系统学习其基础知识的人群。 使用场景及目标:①理解数据结构的基本概念,掌握逻辑结构和存储结构的区别与联系;②熟悉不同存储方式的特点及应用场景;③学会分析简单算法的时间复杂度,为后续深入学习打下坚实基础。 阅读建议:本章节内容较为理论化,建议结合实际案例进行理解,尤其是对于逻辑结构和存储结构的理解要深入到具体的应用场景中,同时可以尝试编写一些简单的程序来加深对抽象数据类型的认识。
内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。
某型自动垂直提升仓储系统方案论证及关键零部件的设计.zip
2135D3F1EFA99CB590678658F575DB23.pdf#page=1&view=fitH
可以搜索文本内的内容,指定目录,指定文件格式,匹配大小写等
Windows 平台 Android Studio 下载与安装指南.zip
Android Studio Meerkat 2024.3.1 Patch 1(android-studio-2024.3.1.14-windows.zip)适用于Windows系统,文件使用360压缩软件分割成两个压缩包,必须一起下载使用: part1: https://download.csdn.net/download/weixin_43800734/90557033 part2: https://download.csdn.net/download/weixin_43800734/90557035
国网台区终端最新规范
国网台区终端最新规范
1.【锂电池剩余寿命预测】Transformer-GRU锂电池剩余寿命预测(Matlab完整源码和数据) 2.数据集:NASA数据集,已经处理好,B0005电池训练、B0006测试; 3.环境准备:Matlab2023b,可读性强; 4.模型描述:Transformer-GRU在各种各样的问题上表现非常出色,现在被广泛使用。 5.领域描述:近年来,随着锂离子电池的能量密度、功率密度逐渐提升,其安全性能与剩余使用寿命预测变得愈发重要。本代码实现了Transformer-GRU在该领域的应用。 6.作者介绍:机器学习之心,博客专家认证,机器学习领域创作者,2023博客之星TOP50,主做机器学习和深度学习时序、回归、分类、聚类和降维等程序设计和案例分析,文章底部有博主联系方式。从事Matlab、Python算法仿真工作8年,更多仿真源码、数据集定制私信。
Android项目原生java语言课程设计,包含LW+ppt
大学生入门前端-五子棋vue项目
这是一个完整的端到端解决方案,用于分析和预测阿联酋(UAE)地区的二手车价格。数据集包含 10,000 条二手车信息,覆盖了迪拜、阿布扎比和沙迦等城市,并提供了精确的地理位置数据。此外,项目还包括一个基于 Dash 构建的 Web 应用程序代码和一个训练好的 XGBoost 模型,帮助用户探索区域市场趋势、预测车价以及可视化地理空间洞察。 数据集内容 项目文件以压缩 ZIP 归档形式提供,包含以下内容: 数据文件: data/uae_used_cars_10k.csv:包含 10,000 条二手车记录的数据集,涵盖车辆品牌、型号、年份、里程数、发动机缸数、价格、变速箱类型、燃料类型、颜色、描述以及销售地点(如迪拜、阿布扎比、沙迦)。 模型文件: models/stacking_model.pkl:训练好的 XGBoost 模型,用于预测二手车价格。 models/scaler.pkl:用于数据预处理的缩放器。 models.py:模型相关功能的实现。 train_model.py:训练模型的脚本。 Web 应用程序文件: app.py:Dash 应用程序的主文件。 callback
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
此为代码审查工具 可查 文件数,字节数,总行数,代码行数,注释行数,空白行数,注释率等
内容概要:本文档涵盖了一项关于企业破产概率的详细分析任务,分为书面回答和Python代码实现两大部分。第一部分涉及对业务类型和破产状态的边际分布、条件分布及相对风险的计算,并绘制了相应的二维条形图。第二部分利用Python进行了数据处理和可视化,包括计算比值比、识别抽样技术类型、分析鱼类数据集以及探讨辛普森悖论。此外,还提供了针对鱼类和树木数据的统计分析方法。 适合人群:适用于有一定数学和编程基础的学习者,尤其是对统计学、数据分析感兴趣的大学生或研究人员。 使用场景及目标:①帮助学生掌握统计学概念如边际分布、条件分布、相对风险和比值比的实际应用;②教授如何用Python进行数据清洗、分析和可视化;③提高对不同类型抽样技术和潜在偏见的理解。 其他说明:文档不仅包含了理论知识讲解,还有具体的代码实例供读者参考实践。同时提醒读者在完成作业时需要注意提交格式的要求。