`
高军威
  • 浏览: 183528 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

BigDecimal商业计算详解

阅读更多
1、浮点数精确计算
   胜利油田三流合一项目中一直存在一个问题,就是每次报表统计的物资金额和实际的金额要差那么几分钱,和实际金额不一致,让客户觉得总是不那么舒服,原因是因为我们使用java的浮点类型double来定义物资金额,并且在报表统计中我们经常要进行一些运算,但Java中浮点数(double、float)的计算是非精确计算,请看下面一个例子:

       System.out.println(0.05 + 0.01);
    System.out.println(1.0 - 0.42);
    System.out.println(4.015 * 100);
    System.out.println(123.3 / 100);
你的期望输出是什么?可实际的输出确实这样的:
       0.060000000000000005
       0.5800000000000001
       401.49999999999994
       1.2329999999999999
   这个问题就非常严重了,如果你有123.3元要购买商品,而计算机却认为你只有123.29999999999999元,钱不够,计算机拒绝交易。

2、四舍五入
    是否可以四舍五入呢?当然可以,习惯上我们本能就会这样考虑,但四舍五入意味着误差,商业运算中可能意味着错误,同时Java中也没有提供保留指定位数的四舍五入方法,只提供了一个Math.round(double d)和Math.round(float f)的方法,分别返回长整型和整型值。round方法不能设置保留几位小数,我们只能象这样(保留两位):
public double round(double value){ 
	return Math.round( value * 100 ) / 100.0; 
}


但非常不幸的是,上面的代码并不能正常工作,给这个方法传入4.015它将返回4.01而不是4.02,如我们在上面看到的

4.015 * 100 = 401.49999999999994

因此如果我们要做到精确的四舍五入,这种方法不能满足我们的要求。

还有一种方式是使用java.text.DecimalFormat,但也存在问题,format采用的舍入模式是ROUND_HALF_DOWN(舍入模式在下面有介绍),比如说4.025保留两位小数会是4.02,因为.025距离” nearest neighbor”(.02和.03)长度是相等,向下舍入就是.02,如果是4.0251那么保留两位小数就是4.03。

System.out.println(new java.text.DecimalFormat("0.00").format(4.025)); 
System.out.println(new java.text.DecimalFormat("0.00").format(4.0251)); 

输出是
4.02
4.03

3、浮点数输出(科学记数法)
Java浮点型数值在大于9999999.0就自动转化为科学记数法来表示,我们看下面的例子:
    System.out.println(999999999.04);
    System.out.println(99999999.04);
    System.out.println(10000000.01);
    System.out.println(9999999.04);
输出的结果如下:

    9.9999999904E8
    9.999999904E7
    1.000000001E7
    9999999.04
   但有时我们可能不需要科学记数法的表示方法,需要转换为字符串,还不能直接用toString()等方法转换,很烦琐。
BigDecimal介绍(详看附件)

8种舍入模式(Rounding mode):

在银行、帐户、计费等商业领域,BigDecimal提供了精确的数值计算。其中8种舍入方式值得掌握。

1、ROUND_UP
舍入远离零的舍入模式。
在丢弃非零部分之前始终增加数字(始终对非零舍弃部分前面的数字加1)。
注意,此舍入模式始终不会减少计算值的大小。
2、ROUND_DOWN
接近零的舍入模式。
在丢弃某部分之前始终不增加数字(从不对舍弃部分前面的数字加1,即截短)。
注意,此舍入模式始终不会增加计算值的大小。
3、ROUND_CEILING
接近正无穷大的舍入模式。
如果 BigDecimal 为正,则舍入行为与 ROUND_UP 相同;
如果为负,则舍入行为与 ROUND_DOWN 相同。
注意,此舍入模式始终不会减少计算值。
4、ROUND_FLOOR
接近负无穷大的舍入模式。
如果 BigDecimal 为正,则舍入行为与 ROUND_DOWN 相同;
如果为负,则舍入行为与 ROUND_UP 相同。
注意,此舍入模式始终不会增加计算值。
5、ROUND_HALF_UP
向“最接近的”数字舍入,如果与两个相邻数字的距离相等,则为向上舍入的舍入模式。
如果舍弃部分 >= 0.5,则舍入行为与 ROUND_UP 相同;否则舍入行为与 ROUND_DOWN 相同。
注意,这是我们大多数人在小学时就学过的舍入模式(四舍五入)。
6、ROUND_HALF_DOWN
向“最接近的”数字舍入,如果与两个相邻数字的距离相等,则为上舍入的舍入模式。
如果舍弃部分 > 0.5,则舍入行为与 ROUND_UP 相同;否则舍入行为与 ROUND_DOWN 相同(五舍六入)。
7、ROUND_HALF_EVEN
向“最接近的”数字舍入,如果与两个相邻数字的距离相等,则向相邻的偶数舍入。
如果舍弃部分左边的数字为奇数,则舍入行为与 ROUND_HALF_UP 相同;
如果为偶数,则舍入行为与 ROUND_HALF_DOWN 相同。
注意,在重复进行一系列计算时,此舍入模式可以将累加错误减到最小。
此舍入模式也称为“银行家舍入法”,主要在美国使用。四舍六入,五分两种情况。
如果前一位为奇数,则入位,否则舍去。
以下例子为保留小数点1位,那么这种舍入方式下的结果。
1.15>1.2 1.25>1.2
8、ROUND_UNNECESSARY
断言请求的操作具有精确的结果,因此不需要舍入。
如果对获得精确结果的操作指定此舍入模式,则抛出ArithmeticException。

工具类提供:
这里我们提供了一个工具类,定义浮点数的加、减、乘、除和四舍五入等运算方法。以供参考。

package com.test;

import java.math.BigDecimal;

/**
 * <li>由于Java的简单类型不能够精确的对浮点数进行运算,这个工具类提供精 确的浮点数运算,包括加减乘除和四舍五入。</li>
 * <li>推荐使用 String 参数类型,这样计算结果是最精确的</li>
 */
public class Arith {

	// 默认除法运算精度
	private static final int DEF_DIV_SCALE = 10;

	// 这个类不能实例化
	private Arith() {
	}

	/**
	 * 提供精确的加法运算。
	 * @param v1 被加数
	 * @param v2 加数
	 * @return 两个参数的和
	 */
	public static double add(double v1, double v2) {
		BigDecimal b1 = new BigDecimal(Double.toString(v1));
		BigDecimal b2 = new BigDecimal(Double.toString(v2));
		return b1.add(b2).doubleValue();
	}
	
	/**
	 * 提供精确的加法运算。
	 * @param v1 被加数
	 * @param v2 加数
	 * @return 两个参数的和
	 */
	public static double add(String v1, String v2) {
		BigDecimal b1 = new BigDecimal(v1);
		BigDecimal b2 = new BigDecimal(v2);
		return b1.add(b2).doubleValue();
	}

	/**
	 * 提供精确的减法运算。
	 * @param v1 被减数
	 * @param v2 减数
	 * @return 两个参数的差
	 */
	public static double sub(double v1, double v2) {
		BigDecimal b1 = new BigDecimal(Double.toString(v1));
		BigDecimal b2 = new BigDecimal(Double.toString(v2));
		return b1.subtract(b2).doubleValue();
	}
	
	/**
	 * 提供精确的减法运算。
	 * @param v1 被减数
	 * @param v2 减数
	 * @return 两个参数的差
	 */
	public static double sub(String v1, String v2) {
		BigDecimal b1 = new BigDecimal(v1);
		BigDecimal b2 = new BigDecimal(v2);
		return b1.subtract(b2).doubleValue();
	}

	/**
	 * 提供精确的乘法运算。
	 * @param v1 被乘数
	 * @param v2 乘数
	 * @return 两个参数的积
	 */
	public static double mul(double v1, double v2) {
		BigDecimal b1 = new BigDecimal(Double.toString(v1));
		BigDecimal b2 = new BigDecimal(Double.toString(v2));
		return b1.multiply(b2).doubleValue();
	}
	
	/**
	 * 提供精确的乘法运算。
	 * @param v1 被乘数
	 * @param v2 乘数
	 * @return 两个参数的积
	 */
	public static double mul(String v1, String v2) {
		BigDecimal b1 = new BigDecimal(v1);
		BigDecimal b2 = new BigDecimal(v2);
		return b1.multiply(b2).doubleValue();
	}
	
	/**
	 * 提供(相对)精确的除法运算,当发生除不尽的情况时,精确到 小数点以后10位元,以后的数字四捨五入。
	 * @param v1 被除数
	 * @param v2 除数
	 * @return 两个参数的商
	 */
	public static double div(double v1, double v2) {
		return divide(v1, v2, DEF_DIV_SCALE);
	}
	
	/**
	 * 提供(相对)精确的除法运算。当发生除不尽的情况时,由scale参数指
	 * 定精度,以后的数字四舍五入。舍入模式采用ROUND_HALF_UP
	 * @param v1
	 * @param v2
	 * @param scale 表示需要精确到小数点以后几位
	 * @return double 两个参数的商<br/>
	 */
	public static double divide(double v1,double v2, int scale)
	{
		return divide(v1, v2, scale, BigDecimal.ROUND_HALF_UP);
	}
	
	/**
	 * 提供(相对)精确的除法运算。当发生除不尽的情况时,由scale参数指 
	 * 定精度,以后的数字四舍五入。舍入模式采用用户指定舍入模式
	 * @param v1
	 * @param v2
	 * @param scale 表示需要精确到小数点以后几位
	 * @param round_mode 表示用户指定的舍入模式
	 * @return double 两个参数的商<br/>
	 */
	public static double divide(double v1,double v2,int scale, int round_mode){
		if(scale < 0)
		{
			throw new IllegalArgumentException("The scale must be a positive integer or zero");
		} 
		BigDecimal b1 = new BigDecimal(Double.toString(v1));
		BigDecimal b2 = new BigDecimal(Double.toString(v2));
		return b1.divide(b2, scale, round_mode).doubleValue();
	}
	
	/**
	 * 提供(相对)精确的除法运算,当发生除不尽的情况时,精确到 小数点以后10位元,以后的数字四捨五入。
	 * @param v1 被除数
	 * @param v2 除数
	 * @return 两个参数的商
	 */
	public static double div(String v1, String v2) {
		return divide(v1, v2, DEF_DIV_SCALE);
	}
	
	/**
	 * 提供(相对)精确的除法运算。当发生除不尽的情况时,由scale参数指
	 * 定精度,以后的数字四舍五入。舍入模式采用ROUND_HALF_UP
	 * @param v1
	 * @param v2
	 * @param scale 表示需要精确到小数点以后几位
	 * @return double 两个参数的商<br/>
	 */
	public static double divide(String v1,String v2, int scale)
	{
		return divide(v1, v2, scale, BigDecimal.ROUND_HALF_UP);
	}
	
	/**
	 * 提供(相对)精确的除法运算。当发生除不尽的情况时,由scale参数指 
	 * 定精度,以后的数字四舍五入。舍入模式采用用户指定舍入模式
	 * @param v1
	 * @param v2
	 * @param scale 表示需要精确到小数点以后几位
	 * @param round_mode 表示用户指定的舍入模式
	 * @return double 两个参数的商<br/>
	 */
	public static double divide(String v1,String v2,int scale, int round_mode){
		if(scale < 0)
		{
			throw new IllegalArgumentException("The scale must be a positive integer or zero");
		} 
		BigDecimal b1 = new BigDecimal(v1);
		BigDecimal b2 = new BigDecimal(v2);
		return b1.divide(b2, scale, round_mode).doubleValue();
	}

	/**
	 * 提供精确的小数位四舍五入处理,舍入模式采用ROUND_HALF_UP
	 * @param v 需要四舍五入的数字
	 * @param scale 小数点后保留几位
	 * @return 四舍五入后的结果
	 */
	public static double round(double v, int scale) {
		return round(v, scale, BigDecimal.ROUND_HALF_UP);
	}
	
	/**
	 * 提供精确的小数位四舍五入处理
	 * @param v 需要四舍五入的数字
	 * @param scale 小数点后保留几位
	 * @param round_mode 指定的舍入模式
	 * @return double 四舍五入后的结果<br/>
	 */
	public static double round(double v, int scale, int round_mode)
	{
		if(scale<0)
		{
			throw new IllegalArgumentException("The scale must be a positive integer or zero");
		}
		BigDecimal b = new BigDecimal(Double.toString(v));
		return b.setScale(scale, round_mode).doubleValue();
	}
	
	/**
	 * 提供精确的小数位四舍五入处理,舍入模式采用ROUND_HALF_UP
	 * @param v 需要四舍五入的数字
	 * @param scale 小数点后保留几位
	 * @return 四舍五入后的结果
	 */
	public static double round(String v, int scale) {
		return round(v, scale, BigDecimal.ROUND_HALF_UP);
	}
	
	/**
	 * 提供精确的小数位四舍五入处理
	 * @param v 需要四舍五入的数字
	 * @param scale 小数点后保留几位
	 * @param round_mode 指定的舍入模式
	 * @return double 四舍五入后的结果<br/>
	 */
	public static double round(String v, int scale, int round_mode)
	{
		if(scale<0)
		{
			throw new IllegalArgumentException("The scale must be a positive integer or zero");
		}
		BigDecimal b = new BigDecimal(v);
		return b.setScale(scale, round_mode).doubleValue();
	}
}
分享到:
评论

相关推荐

    Java BigDecimal类用法详解

    Java中的`BigDecimal`类是用来表示任意精度的十进制数,尤其适合于需要精确计算的商业和财务场景。它的核心概念包括非标度值(unscaled value)和标度(scale),非标度值是一个任意精度的整数,标度则是小数点后的...

    Java BigDecimal详解_动力节点Java学院整理

    借用《Effactive Java》这本书中的话,float和double类型的主要设计目标是为了科学计算和工程计算。他们执行二进制浮点运算,...但是,商业计算往往要求结果精确,例如银行存款数额,这时候BigDecimal就派上大用场啦。

    如何面试java程序员.pdf,这是一份不错的文件

    - **浮点运算误差**:Java中的浮点运算存在精度误差,精确计算应使用BigDecimal类。 5. **字符集**: - **字符类型(char)**:采用Unicode字符集,支持各种语言的字符。 6. **Java编程技能**: - **阅读编程...

    三菱FX3G FX3S与四台E700变频器Modbus RTU通讯控制:正反转、频率设定与读取方案,三菱FX3G FX3S与四台E700变频器通讯:Modbus RTU协议实现正反转、频率设定与控制

    三菱FX3G FX3S与四台E700变频器Modbus RTU通讯控制:正反转、频率设定与读取方案,三菱FX3G FX3S与四台E700变频器通讯:Modbus RTU协议实现正反转、频率设定与控制,快速反馈与教程包含,三菱FX3G FX3S 485协议通讯四台三菱E700变频器程序资料 三菱FX3G FX3S+485bd扩展,采用modbus rtu协议,crc校验,通讯控制四台E700变频器,可以实现正反转,停止,频率的设定,频率,电流等的读取。 反馈快,使用方便,包括教程,plc和触摸屏程序,变频器参数设置和接线,别的变频器支持rtu协议也可以实现。 ,三菱FX系列PLC; 485协议通讯; 变频器E700; 通讯控制; 参数设置; 教程。,三菱PLC控制E700变频器:485协议通讯与程序设置全解

    hyphen-nl-0.20050617-10.el7.x64-86.rpm.tar.gz

    1、文件内容:hyphen-nl-0.20050617-10.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/hyphen-nl-0.20050617-10.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊

    西门子S7-1200PLC结构化编程在5轴伺服项目中的应用:模块化设计、触摸屏控制及电气图纸实战解析,西门子S7-1200PLC结构化编程实现多轴联动与多种伺服功能应用:CAD图纸、PLC程序和触摸屏

    西门子S7-1200PLC结构化编程在5轴伺服项目中的应用:模块化设计、触摸屏控制及电气图纸实战解析,西门子S7-1200PLC结构化编程实现多轴联动与多种伺服功能应用:CAD图纸、PLC程序和触摸屏程序协同运作。,西门子S7-1200PLC结构化编程5轴伺服项目 ,包含plc程序、威纶通触摸屏程序、cad电气图纸。 可以实现以下功能,规格有: 1.三轴机械手X轴-Y轴-Z轴联动取放料PTO脉冲定位控制台达B2伺服 2.台达伺服速度模式应用+扭矩模式应用实现收放卷 3.程序为结构化编程,每一功能为模块化设计,功能:自动_手动_单步_暂停后原位置继续运行_轴断电保持_报警功能_气缸运行及报警. 4.每个功能块可以无数次重复调用,可以建成库,用时调出即可 5.上位机采样威纶通触摸屏 6.参考本案例熟悉掌握结构化编程技巧,扩展逻辑思维。 博图14以上都可以打开 ,核心关键词:西门子S7-1200PLC; 结构化编程; 5轴伺服项目; PLC程序; 威纶通触摸屏程序; CAD电气图纸; 三轴机械手; PTO脉冲定位控制; 台达B2伺服; 速度模式应用; 扭矩模式应用; 模块化设计; 轴断电保

    情感分析算法的关键应用领域与典型实战案例

    情感分析算法在多个领域有着广泛的应用场景和丰富的案例

    基于MATLAB仿真的MMC整流站与逆变站柔性互联技术研究:快速工况仿真与环流抑制控制,基于MATLAB仿真的MMC整流站与逆变站运行分析及四端柔性互联工况仿真模拟研究,21电平MMC整流站、MMC逆

    基于MATLAB仿真的MMC整流站与逆变站柔性互联技术研究:快速工况仿真与环流抑制控制,基于MATLAB仿真的MMC整流站与逆变站运行分析及四端柔性互联工况仿真模拟研究,21电平MMC整流站、MMC逆变站、两端柔性互联的MATLAB仿真模型,4端柔性互联、MMC桥臂平均值模型、MMC聚合模型(四端21电平一分钟即能完成2s的工况仿真) 1-全部能正常运行,图四和图五为仿真波形 2-双闭环控制,逆变站PQ控制,整流站站Udc Q控制 3-最近电平逼近调制+子模块电容充电 4-环流抑制控制 ,1. 21电平MMC整流站; 2. MMC逆变站; 3. MATLAB仿真模型; 4. 两端柔性互联; 5. 桥臂平均值模型; 6. 聚合模型; 7. 双闭环控制; 8. 最近电平逼近调制; 9. 子模块电容充电; 10. 环流抑制控制。,基于柔性互联的MMC系统仿真模型:多电平控制与环流抑制研究

    有效应对网络舆情教育培训PPT.pptx

    有效应对网络舆情教育培训PPT.pptx

    高光谱解混和图片去噪 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    【轴承压力】基于matlab GUI止推轴承压力计算【含Matlab源码 12069期】.zip

    Matlab领域上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

    娱乐小工具微信小程序源码下载支持多种流量主.zip

    淘宝买的,直接分享给大家了,没有测试环境,也没有办法去测。但我想,他应该是可以用的

    基于A、RBFS 和爬山算法求解 TSP问题 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    ACM比赛经验分享(基础知识与算法准备等).zip

    ACM比赛经验分享(基础知识与算法准备等)

    基于matlab平台的芯片字符识别.zip

    运行GUI版本,可二开

    比例-积分-微分 (PID) 鲁棒控制及电流反馈以确保 UPS 的稳定性 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    机器学习(预测模型):包含恶意网址的数据库或数据集

    该是指包含恶意网址的数据库或数据集,它通常被用于网络安全研究、恶意软件检测、网络欺诈防范等领域。研究人员和安全专家会利用这个数据集来分析恶意网址的特征、行为模式,进而开发出相应的检测算法和防护措施,以识别和阻止恶意网址对用户设备和网络环境造成的潜在威胁。该数据集包含约 651,191 条经过标记的 URL,涵盖了四种主要类型:良性(Benign)、篡改(Defacement)、钓鱼(Phishing)和恶意软件(Malware)。其中,良性 URL 占据了约 428,103 条,篡改 URL 有 96,457 条,钓鱼 URL 为 94,111 条,而恶意软件 URL 则有 32,520 条。该数据集的显著特点是其多类别分类的全面性,不仅包括常见的恶意 URL 类型,还涵盖了大量良性 URL,使得研究人员能够更全面地理解和区分不同类型的 URL。此外,数据集以原始的 URL 形式提供,研究人员可以根据需要提取和创建特征,而不受预设特征的限制。

    集字卡v4.3.4微信公众号原版三种UI+关键字卡控制+支持强制关注.zip

    字卡v4.3.4 原版 三种UI+关键字卡控制+支持获取用户信息+支持强制关注 集卡模块从一开始的版本到助力版本再到现在的新规则版本。 集卡模块难度主要在于 如何控制各种不同的字卡组合 被粉丝集齐的数量。 如果不控制那么一定会出现超过数量的粉丝集到指定的字卡组合,造成奖品不够的混乱,如果大奖价值高的话,超过数量的粉丝集到大奖后,就造成商家的活动费用超支了。我们冥思苦想如何才能限制集到指定字卡组合的粉丝数,后我们想到了和支付宝一样的选一张关键字卡来进行规则设置的方式来进行限制,根据奖品所需的关键字卡数,设定规则就可以控制每种奖品所需字卡组合被粉丝集到的数量,规则可以在活动进行中根据需要进行修改,活动规则灵活度高。新版的集卡规则,在此次政府发布号的活动中经受了考验,集到指定字卡组合的粉丝没有超出规则限制。有了这个规则限制后,您无需盯着活动,建好活动后就无人值守让活动进行就行了,您只需要时不时来看下蹭蹭上涨的活动数据即可。 被封? 无需担心,模块内置有防封功能,支持隐藏主域名,显示炮灰域名,保护活动安全进行。 活动准备? 只需要您有一个认证服务号即可,支持订阅号借用认证服务号来做活动。如果您

    DSP28035的CAN通信升级方案:包括源码、测试固件与C#上位机开发,支持周立功USBCAN-II兼容盒及BootLoader闪烁指示,DSP28035的CAN升级方案及详细配置说明:使用新动力开

    DSP28035的CAN通信升级方案:包括源码、测试固件与C#上位机开发,支持周立功USBCAN-II兼容盒及BootLoader闪烁指示,DSP28035的CAN升级方案及详细配置说明:使用新动力开发板与C#上位机软件实现固件升级,涉及用户代码、BootLoader代码及硬件连接细节,DSP28035的can升级方案 提供源代码,测试用固件。 上位机采用c#开发。 说明 一、介绍 1、测试平台介绍:采用M新动力的DSP28035开发板,CAN口使用GPIO30\31。波特率为500K。 2、28035__APP为测试用的用户代码,ccs10.3.1工程,参考其CMD配置。 3、28035_Bootloader_CAN为bootloader源代码,ccs10.3.1工程; 4、SWJ为上位机,采用VS2013开发,C#语言。 5、测试使用的是周立功的USBCAN-II,can盒,如果用一些国产可以兼容周立功的,则更这里面的ControlCAN.dll即可。 6、升级的app工程需要生成hex去升级,具体参考我给的工程的设置。 7、BootLoader代码,只有D400这一个灯1s闪烁一

    基于Matlab的数字验证码识别系统:预处理与不变矩算法的实践应用及GUI界面构建,基于MATLAB不变矩算法的数字验证码识别系统设计与实现,基于matlab不变矩算法实现数字验证码 过程:先对验证图

    基于Matlab的数字验证码识别系统:预处理与不变矩算法的实践应用及GUI界面构建,基于MATLAB不变矩算法的数字验证码识别系统设计与实现,基于matlab不变矩算法实现数字验证码 过程:先对验证图像进行去噪、定位、归一化等预处理,然后计算待识别数字的不变矩,再进行特征匹配,得到识别结果。 以Matlab软件为开发平台来进行设计实现及仿真,并构建相应的GUI界面。 实验结果表明利用不变矩在识别数字验证码方面具有可行性。 ,关键词:Matlab;不变矩算法;数字验证码;预处理;特征匹配;GUI界面;实验验证;可行性。,Matlab实现数字验证码识别:预处理与不变矩算法的GUI仿真

Global site tag (gtag.js) - Google Analytics