`
gaojingsong
  • 浏览: 1200996 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
文章分类
社区版块
存档分类
最新评论

ArrayList源码

阅读更多
/*
* @(#)ArrayList.java 1.56 06/04/21
*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/

package java.util;

/**
* Resizable-array implementation of the <tt>List</tt> interface.  Implements
* all optional list operations, and permits all elements, including
* <tt>null</tt>.  In addition to implementing the <tt>List</tt> interface,
* this class provides methods to manipulate the size of the array that is
* used internally to store the list.  (This class is roughly equivalent to
* <tt>Vector</tt>, except that it is unsynchronized.)<p>
*
* The <tt>size</tt>, <tt>isEmpty</tt>, <tt>get</tt>, <tt>set</tt>,
* <tt>iterator</tt>, and <tt>listIterator</tt> operations run in constant
* time.  The <tt>add</tt> operation runs in <i>amortized constant time</i>,
* that is, adding n elements requires O(n) time.  All of the other operations
* run in linear time (roughly speaking).  The constant factor is low compared
* to that for the <tt>LinkedList</tt> implementation.<p>
*
* Each <tt>ArrayList</tt> instance has a <i>capacity</i>.  The capacity is
* the size of the array used to store the elements in the list.  It is always
* at least as large as the list size.  As elements are added to an ArrayList,
* its capacity grows automatically.  The details of the growth policy are not
* specified beyond the fact that adding an element has constant amortized
* time cost.<p>
*
* An application can increase the capacity of an <tt>ArrayList</tt> instance
* before adding a large number of elements using the <tt>ensureCapacity</tt>
* operation.  This may reduce the amount of incremental reallocation.
*
* <p><strong>Note that this implementation is not synchronized.</strong>
* If multiple threads access an <tt>ArrayList</tt> instance concurrently,
* and at least one of the threads modifies the list structurally, it
* <i>must</i> be synchronized externally.  (A structural modification is
* any operation that adds or deletes one or more elements, or explicitly
* resizes the backing array; merely setting the value of an element is not
* a structural modification.)  This is typically accomplished by
* synchronizing on some object that naturally encapsulates the list.
*
* If no such object exists, the list should be "wrapped" using the
* {@link Collections#synchronizedList Collections.synchronizedList}
* method.  This is best done at creation time, to prevent accidental
* unsynchronized access to the list:<pre>
*   List list = Collections.synchronizedList(new ArrayList(...));</pre>
*
* <p>The iterators returned by this class's <tt>iterator</tt> and
* <tt>listIterator</tt> methods are <i>fail-fast</i>: if the list is
* structurally modified at any time after the iterator is created, in any way
* except through the iterator's own <tt>remove</tt> or <tt>add</tt> methods,
* the iterator will throw a {@link ConcurrentModificationException}.  Thus, in
* the face of concurrent modification, the iterator fails quickly and cleanly,
* rather than risking arbitrary, non-deterministic behavior at an undetermined
* time in the future.<p>
*
* Note that the fail-fast behavior of an iterator cannot be guaranteed
* as it is, generally speaking, impossible to make any hard guarantees in the
* presence of unsynchronized concurrent modification.  Fail-fast iterators
* throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
* Therefore, it would be wrong to write a program that depended on this
* exception for its correctness: <i>the fail-fast behavior of iterators
* should be used only to detect bugs.</i><p>
*
* This class is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @author  Josh Bloch
* @author  Neal Gafter
* @version 1.56, 04/21/06
* @see     Collection
* @see     List
* @see     LinkedList
* @see     Vector
* @since   1.2
*/

public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
    private static final long serialVersionUID = 8683452581122892189L;

    /**
     * The array buffer into which the elements of the ArrayList are stored.
     * The capacity of the ArrayList is the length of this array buffer.
     */
    private transient Object[] elementData;

    /**
     * The size of the ArrayList (the number of elements it contains).
     *
     * @serial
     */
    private int size;

    /**
     * Constructs an empty list with the specified initial capacity.
     *
     * @param   initialCapacity   the initial capacity of the list
     * @exception IllegalArgumentException if the specified initial capacity
     *            is negative
     */
    public ArrayList(int initialCapacity) {
super();
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
this.elementData = new Object[initialCapacity];
    }

    /**
     * Constructs an empty list with an initial capacity of ten.
     */
    public ArrayList() {
this(10);
    }

    /**
     * Constructs a list containing the elements of the specified
     * collection, in the order they are returned by the collection's
     * iterator.
     *
     * @param c the collection whose elements are to be placed into this list
     * @throws NullPointerException if the specified collection is null
     */
    public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
size = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
    elementData = Arrays.copyOf(elementData, size, Object[].class);
    }

    /**
     * Trims the capacity of this <tt>ArrayList</tt> instance to be the
     * list's current size.  An application can use this operation to minimize
     * the storage of an <tt>ArrayList</tt> instance.
     */
    public void trimToSize() {
modCount++;
int oldCapacity = elementData.length;
if (size < oldCapacity) {
            elementData = Arrays.copyOf(elementData, size);
}
    }

    /**
     * Increases the capacity of this <tt>ArrayList</tt> instance, if
     * necessary, to ensure that it can hold at least the number of elements
     * specified by the minimum capacity argument.
     *
     * @param   minCapacity   the desired minimum capacity
     */
    public void ensureCapacity(int minCapacity) {
modCount++;
int oldCapacity = elementData.length;
if (minCapacity > oldCapacity) {
    Object oldData[] = elementData;
    int newCapacity = (oldCapacity * 3)/2 + 1;
        if (newCapacity < minCapacity)
newCapacity = minCapacity;
            // minCapacity is usually close to size, so this is a win:
            elementData = Arrays.copyOf(elementData, newCapacity);
}
    }

    /**
     * Returns the number of elements in this list.
     *
     * @return the number of elements in this list
     */
    public int size() {
return size;
    }

    /**
     * Returns <tt>true</tt> if this list contains no elements.
     *
     * @return <tt>true</tt> if this list contains no elements
     */
    public boolean isEmpty() {
return size == 0;
    }

    /**
     * Returns <tt>true</tt> if this list contains the specified element.
     * More formally, returns <tt>true</tt> if and only if this list contains
     * at least one element <tt>e</tt> such that
     * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
     *
     * @param o element whose presence in this list is to be tested
     * @return <tt>true</tt> if this list contains the specified element
     */
    public boolean contains(Object o) {
return indexOf(o) >= 0;
    }

    /**
     * Returns the index of the first occurrence of the specified element
     * in this list, or -1 if this list does not contain the element.
     * More formally, returns the lowest index <tt>i</tt> such that
     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
     * or -1 if there is no such index.
     */
    public int indexOf(Object o) {
if (o == null) {
    for (int i = 0; i < size; i++)
if (elementData[i]==null)
    return i;
} else {
    for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
    return i;
}
return -1;
    }

    /**
     * Returns the index of the last occurrence of the specified element
     * in this list, or -1 if this list does not contain the element.
     * More formally, returns the highest index <tt>i</tt> such that
     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
     * or -1 if there is no such index.
     */
    public int lastIndexOf(Object o) {
if (o == null) {
    for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
    return i;
} else {
    for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
    return i;
}
return -1;
    }

    /**
     * Returns a shallow copy of this <tt>ArrayList</tt> instance.  (The
     * elements themselves are not copied.)
     *
     * @return a clone of this <tt>ArrayList</tt> instance
     */
    public Object clone() {
try {
    ArrayList<E> v = (ArrayList<E>) super.clone();
    v.elementData = Arrays.copyOf(elementData, size);
    v.modCount = 0;
    return v;
} catch (CloneNotSupportedException e) {
    // this shouldn't happen, since we are Cloneable
    throw new InternalError();
}
    }

    /**
     * Returns an array containing all of the elements in this list
     * in proper sequence (from first to last element).
     *
     * <p>The returned array will be "safe" in that no references to it are
     * maintained by this list.  (In other words, this method must allocate
     * a new array).  The caller is thus free to modify the returned array.
     *
     * <p>This method acts as bridge between array-based and collection-based
     * APIs.
     *
     * @return an array containing all of the elements in this list in
     *         proper sequence
     */
    public Object[] toArray() {
        return Arrays.copyOf(elementData, size);
    }

    /**
     * Returns an array containing all of the elements in this list in proper
     * sequence (from first to last element); the runtime type of the returned
     * array is that of the specified array.  If the list fits in the
     * specified array, it is returned therein.  Otherwise, a new array is
     * allocated with the runtime type of the specified array and the size of
     * this list.
     *
     * <p>If the list fits in the specified array with room to spare
     * (i.e., the array has more elements than the list), the element in
     * the array immediately following the end of the collection is set to
     * <tt>null</tt>.  (This is useful in determining the length of the
     * list <i>only</i> if the caller knows that the list does not contain
     * any null elements.)
     *
     * @param a the array into which the elements of the list are to
     *          be stored, if it is big enough; otherwise, a new array of the
     *          same runtime type is allocated for this purpose.
     * @return an array containing the elements of the list
     * @throws ArrayStoreException if the runtime type of the specified array
     *         is not a supertype of the runtime type of every element in
     *         this list
     * @throws NullPointerException if the specified array is null
     */
    public <T> T[] toArray(T[] a) {
        if (a.length < size)
            // Make a new array of a's runtime type, but my contents:
            return (T[]) Arrays.copyOf(elementData, size, a.getClass());
System.arraycopy(elementData, 0, a, 0, size);
        if (a.length > size)
            a[size] = null;
        return a;
    }

    // Positional Access Operations

    /**
     * Returns the element at the specified position in this list.
     *
     * @param  index index of the element to return
     * @return the element at the specified position in this list
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E get(int index) {
RangeCheck(index);

return (E) elementData[index];
    }

    /**
     * Replaces the element at the specified position in this list with
     * the specified element.
     *
     * @param index index of the element to replace
     * @param element element to be stored at the specified position
     * @return the element previously at the specified position
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E set(int index, E element) {
RangeCheck(index);

E oldValue = (E) elementData[index];
elementData[index] = element;
return oldValue;
    }

    /**
     * Appends the specified element to the end of this list.
     *
     * @param e element to be appended to this list
     * @return <tt>true</tt> (as specified by {@link Collection#add})
     */
    public boolean add(E e) {
ensureCapacity(size + 1);  // Increments modCount!!
elementData[size++] = e;
return true;
    }

    /**
     * Inserts the specified element at the specified position in this
     * list. Shifts the element currently at that position (if any) and
     * any subsequent elements to the right (adds one to their indices).
     *
     * @param index index at which the specified element is to be inserted
     * @param element element to be inserted
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public void add(int index, E element) {
if (index > size || index < 0)
    throw new IndexOutOfBoundsException(
"Index: "+index+", Size: "+size);

ensureCapacity(size+1);  // Increments modCount!!
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
    }

    /**
     * Removes the element at the specified position in this list.
     * Shifts any subsequent elements to the left (subtracts one from their
     * indices).
     *
     * @param index the index of the element to be removed
     * @return the element that was removed from the list
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E remove(int index) {
RangeCheck(index);

modCount++;
E oldValue = (E) elementData[index];

int numMoved = size - index - 1;
if (numMoved > 0)
    System.arraycopy(elementData, index+1, elementData, index,
     numMoved);
elementData[--size] = null; // Let gc do its work

return oldValue;
    }

    /**
     * Removes the first occurrence of the specified element from this list,
     * if it is present.  If the list does not contain the element, it is
     * unchanged.  More formally, removes the element with the lowest index
     * <tt>i</tt> such that
     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>
     * (if such an element exists).  Returns <tt>true</tt> if this list
     * contained the specified element (or equivalently, if this list
     * changed as a result of the call).
     *
     * @param o element to be removed from this list, if present
     * @return <tt>true</tt> if this list contained the specified element
     */
    public boolean remove(Object o) {
if (o == null) {
            for (int index = 0; index < size; index++)
if (elementData[index] == null) {
    fastRemove(index);
    return true;
}
} else {
    for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
    fastRemove(index);
    return true;
}
        }
return false;
    }

    /*
     * Private remove method that skips bounds checking and does not
     * return the value removed.
     */
    private void fastRemove(int index) {
        modCount++;
        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // Let gc do its work
    }

    /**
     * Removes all of the elements from this list.  The list will
     * be empty after this call returns.
     */
    public void clear() {
modCount++;

// Let gc do its work
for (int i = 0; i < size; i++)
    elementData[i] = null;

size = 0;
    }

    /**
     * Appends all of the elements in the specified collection to the end of
     * this list, in the order that they are returned by the
     * specified collection's Iterator.  The behavior of this operation is
     * undefined if the specified collection is modified while the operation
     * is in progress.  (This implies that the behavior of this call is
     * undefined if the specified collection is this list, and this
     * list is nonempty.)
     *
     * @param c collection containing elements to be added to this list
     * @return <tt>true</tt> if this list changed as a result of the call
     * @throws NullPointerException if the specified collection is null
     */
    public boolean addAll(Collection<? extends E> c) {
Object[] a = c.toArray();
        int numNew = a.length;
ensureCapacity(size + numNew);  // Increments modCount
        System.arraycopy(a, 0, elementData, size, numNew);
        size += numNew;
return numNew != 0;
    }

    /**
     * Inserts all of the elements in the specified collection into this
     * list, starting at the specified position.  Shifts the element
     * currently at that position (if any) and any subsequent elements to
     * the right (increases their indices).  The new elements will appear
     * in the list in the order that they are returned by the
     * specified collection's iterator.
     *
     * @param index index at which to insert the first element from the
     *              specified collection
     * @param c collection containing elements to be added to this list
     * @return <tt>true</tt> if this list changed as a result of the call
     * @throws IndexOutOfBoundsException {@inheritDoc}
     * @throws NullPointerException if the specified collection is null
     */
    public boolean addAll(int index, Collection<? extends E> c) {
if (index > size || index < 0)
    throw new IndexOutOfBoundsException(
"Index: " + index + ", Size: " + size);

Object[] a = c.toArray();
int numNew = a.length;
ensureCapacity(size + numNew);  // Increments modCount

int numMoved = size - index;
if (numMoved > 0)
    System.arraycopy(elementData, index, elementData, index + numNew,
     numMoved);

        System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
    }

    /**
     * Removes from this list all of the elements whose index is between
     * <tt>fromIndex</tt>, inclusive, and <tt>toIndex</tt>, exclusive.
     * Shifts any succeeding elements to the left (reduces their index).
     * This call shortens the list by <tt>(toIndex - fromIndex)</tt> elements.
     * (If <tt>toIndex==fromIndex</tt>, this operation has no effect.)
     *
     * @param fromIndex index of first element to be removed
     * @param toIndex index after last element to be removed
     * @throws IndexOutOfBoundsException if fromIndex or toIndex out of
     *              range (fromIndex &lt; 0 || fromIndex &gt;= size() || toIndex
     *              &gt; size() || toIndex &lt; fromIndex)
     */
    protected void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = size - toIndex;
        System.arraycopy(elementData, toIndex, elementData, fromIndex,
                         numMoved);

// Let gc do its work
int newSize = size - (toIndex-fromIndex);
while (size != newSize)
    elementData[--size] = null;
    }

    /**
     * Checks if the given index is in range.  If not, throws an appropriate
     * runtime exception.  This method does *not* check if the index is
     * negative: It is always used immediately prior to an array access,
     * which throws an ArrayIndexOutOfBoundsException if index is negative.
     */
    private void RangeCheck(int index) {
if (index >= size)
    throw new IndexOutOfBoundsException(
"Index: "+index+", Size: "+size);
    }

    /**
     * Save the state of the <tt>ArrayList</tt> instance to a stream (that
     * is, serialize it).
     *
     * @serialData The length of the array backing the <tt>ArrayList</tt>
     *             instance is emitted (int), followed by all of its elements
     *             (each an <tt>Object</tt>) in the proper order.
     */
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException{
// Write out element count, and any hidden stuff
int expectedModCount = modCount;
s.defaultWriteObject();

        // Write out array length
        s.writeInt(elementData.length);

// Write out all elements in the proper order.
for (int i=0; i<size; i++)
            s.writeObject(elementData[i]);

if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }

    }

    /**
     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
     * deserialize it).
     */
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
// Read in size, and any hidden stuff
s.defaultReadObject();

        // Read in array length and allocate array
        int arrayLength = s.readInt();
        Object[] a = elementData = new Object[arrayLength];

// Read in all elements in the proper order.
for (int i=0; i<size; i++)
            a[i] = s.readObject();
    }
}
分享到:
评论

相关推荐

    ArrayList源码分析(含jdk1.8).pdf

    通过以上对ArrayList源码的分析,可以总结出如下关键知识点: 1. ArrayList的实现基于动态数组,可以动态地进行容量的调整; 2. ArrayList具有默认初始化容量10,以及无参构造时延迟初始化的特性; 3. ArrayList...

    ArrayList源码.zip

    本压缩包文件“ArrayList源码.zip”包含ArrayList的源代码,可以帮助我们深入理解其内部工作原理和优化策略。 ArrayList的核心实现是通过一个Object类型的数组来存储元素。当添加元素时,如果当前容量不足,...

    ArrayList源码分析

    ### ArrayList源码分析 #### 一、概述 `ArrayList` 是 Java 集合框架中的一个重要的类,它实现了 `List` 接口,并且内部使用动态数组来存储元素。由于其灵活的特性(比如可以方便地增加或删除元素),`ArrayList` ...

    ArrayList源码Jdk1.8

    ### ArrayList源码解析(JDK 1.8) #### 概述 `ArrayList`是Java集合框架中的一个核心组件,它提供了动态数组的功能。与固定大小的数组不同,`ArrayList`可以随着元素的增加而自动扩展其容量。在JDK 1.8中,`...

    第二章 ArrayList源码解析1

    第二章 ArrayList源码解析 ArrayList是Java集合框架中的一种动态数组,它继承自AbstractList,并实现了List接口。ArrayList主要用于存储可变大小的对象列表,它的核心是通过一个Object类型的数组elementData来实现...

    硬核ArrayList源码分析,答应我每天看一遍好么

    《硬核ArrayList源码分析——深入理解Java集合框架》 ArrayList是Java集合框架中的一个重要组成部分,它是基于动态数组实现的列表。在Java 1.8版本中,ArrayList的实现细节和内部工作原理对于理解其性能和行为至关...

    JDK8的ArrayList源码文件

    JDK8的ArrayList源码文件

    Java 集合框架(2-9)-Collection - ArrayList 源码解析.pdf

    《Java集合框架(2-9)-Collection - ArrayList 源码解析》 ArrayList是Java集合框架中的一个重要组件,它属于List接口的实现类,提供了一种动态数组的逻辑视图。ArrayList以高效、灵活的方式存储和操作对象序列,是...

    ArrayList源码阅读笔记

    ArrayList源码阅读笔记 -- 介绍了ArrayList 普通增删改查的过程,从构造空参构造方法,然后添加元素,修改元素,删除元素,获取元素.

    ArrayList 源码深度解析

    ArrayList 源码深度解析 一、重新认识ArrayList 什么是ArrayList? ArrayList是基于数组实现的List类,封装了一个动态再分配的Object数组,以达到可以动态增长和缩减的索引序列。 长啥样? 如图,是一个长度为6,...

    ArrayList源码超详细(附百度网盘链接)-附件资源

    ArrayList源码超详细(附百度网盘链接)-附件资源

    ArrayList的源码

    源码分析见我博文:http://blog.csdn.net/wabiaozia/article/details/50684556

    ArrayList源码分析.docx 等

    转换为其内部数组 `elementData`,然后根据转换后的数组长度设置 `size`。这里需要注意的是,如果 `c.toArray()` ...在面试中,深入理解 ArrayList 的源码和其与其他数据结构的区别是展示 Java 基础技能的重要方面。

    Java编程中ArrayList源码分析

    Java编程中ArrayList源码分析 Java编程中ArrayList源码分析是Java编程中一个重要的知识点,对于Java开发者来说,了解ArrayList的源码可以帮助他们更好地理解Java集合框架的实现机制,从而提高自己的编程水平。 ...

    ArrayList源码分析_016.pdf

    ArrayList是Java集合框架中的一种重要实现,它是List接口的一个具体类,提供了动态数组的功能。ArrayList在内部使用一个Object类型的数组来存储元素,因此它支持快速的随机访问,这是由其实现了RandomAccess接口所...

    ArrayList源码解析(数据结构及底层实现)(csdn)————程序.pdf

    在深入源码解析之前,先了解一下 ArrayList 的基本操作和特点。 ArrayList 的默认容量是 10,这意味着当你创建一个新的 ArrayList 实例时,它会预分配一个长度为 10 的数组。当你向 ArrayList 添加元素时,如果数组...

    Java集合框架ArrayList源码分析(一)

    《深入剖析Java集合框架ArrayList源码》 Java集合框架中的ArrayList是开发者常用的数据结构,它是一种基于动态数组实现的列表。ArrayList的特点在于它的内部结构、性能优化以及在并发环境下的处理方式。本文将深入...

Global site tag (gtag.js) - Google Analytics