`

Java aio(异步网络IO)初探

阅读更多

按照《Unix网络编程》的划分,IO模型可以分为:阻塞IO、非阻塞IO、IO复用、信号驱动IO和异步IO,按照POSIX标准来划分只分为两类:同步IO和异步IO。如何区分呢?首先一个IO操作其实分成了两个步骤:发起IO请求和实际的IO操作,同步IO和异步IO的区别就在于第二个步骤是否阻塞,如果实际的IO读写阻塞请求进程,那么就是同步IO,因此阻塞IO、非阻塞IO、IO服用、信号驱动IO都是同步IO,如果不阻塞,而是操作系统帮你做完IO操作再将结果返回给你,那么就是异步IO。阻塞IO和非阻塞IO的区别在于第一步,发起IO请求是否会被阻塞,如果阻塞直到完成那么就是传统的阻塞IO,如果不阻塞,那么就是非阻塞IO。

   Java nio 2.0的主要改进就是引入了异步IO(包括文件和网络),这里主要介绍下异步网络IO API的使用以及框架的设计,以TCP服务端为例。首先看下为了支持AIO引入的新的类和接口:

 java.nio.channels.AsynchronousChannel
       标记一个channel支持异步IO操作。

 java.nio.channels.AsynchronousServerSocketChannel
       ServerSocket的aio版本,创建TCP服务端,绑定地址,监听端口等。

 java.nio.channels.AsynchronousSocketChannel
       面向流的异步socket channel,表示一个连接。

 java.nio.channels.AsynchronousChannelGroup
       异步channel的分组管理,目的是为了资源共享。一个AsynchronousChannelGroup绑定一个线程池,这个线程池执行两个任务:处理IO事件和派发CompletionHandler。AsynchronousServerSocketChannel创建的时候可以传入一个 AsynchronousChannelGroup,那么通过AsynchronousServerSocketChannel创建的 AsynchronousSocketChannel将同属于一个组,共享资源。

 java.nio.channels.CompletionHandler
       异步IO操作结果的回调接口,用于定义在IO操作完成后所作的回调工作。AIO的API允许两种方式来处理异步操作的结果:返回的Future模式或者注册CompletionHandler,我更推荐用CompletionHandler的方式,这些handler的调用是由 AsynchronousChannelGroup的线程池派发的。显然,线程池的大小是性能的关键因素。AsynchronousChannelGroup允许绑定不同的线程池,通过三个静态方法来创建:

Java代码 复制代码
  1. public static AsynchronousChannelGroup withFixedThreadPool(int nThreads,   
  2.                                                               ThreadFactory threadFactory)   
  3.        throws IOException   
  4.   
  5. public static AsynchronousChannelGroup withCachedThreadPool(ExecutorService executor,   
  6.                                                                int initialSize)   
  7.   
  8. public static AsynchronousChannelGroup withThreadPool(ExecutorService executor)   
  9.        throws IOException  
 public static AsynchronousChannelGroup withFixedThreadPool(int nThreads,
                                                               ThreadFactory threadFactory)
        throws IOException

 public static AsynchronousChannelGroup withCachedThreadPool(ExecutorService executor,
                                                                int initialSize)

 public static AsynchronousChannelGroup withThreadPool(ExecutorService executor)
        throws IOException

 

     需要根据具体应用相应调整,从框架角度出发,需要暴露这样的配置选项给用户。

     在介绍完了aio引入的TCP的主要接口和类之后,我们来设想下一个aio框架应该怎么设计。参考非阻塞nio框架的设计,一般都是采用Reactor模式,Reacot负责事件的注册、select、事件的派发;相应地,异步IO有个Proactor模式,Proactor负责 CompletionHandler的派发,查看一个典型的IO写操作的流程来看两者的区别:

     Reactor:  send(msg) -> 消息队列是否为空,如果为空  -> 向Reactor注册OP_WRITE,然后返回 -> Reactor select -> 触发Writable,通知用户线程去处理 ->先注销Writable(很多人遇到的cpu 100%的问题就在于没有注销),处理Writeable,如果没有完全写入,继续注册OP_WRITE。注意到,写入的工作还是用户线程在处理。
     Proactor: send(msg) -> 消息队列是否为空,如果为空,发起read异步调用,并注册CompletionHandler,然后返回。 -> 操作系统负责将你的消息写入,并返回结果(写入的字节数)给Proactor -> Proactor派发CompletionHandler。可见,写入的工作是操作系统在处理,无需用户线程参与。事实上在aio的API 中,AsynchronousChannelGroup就扮演了Proactor的角色

    CompletionHandler有三个方法,分别对应于处理成功、失败、被取消(通过返回的Future)情况下的回调处理:

Java代码 复制代码
  1. public interface CompletionHandler<V,A> {   
  2.   
  3.      void completed(V result, A attachment);   
  4.   
  5.     void failed(Throwable exc, A attachment);   
  6.   
  7.       
  8.     void cancelled(A attachment);   
  9. }  
public interface CompletionHandler<V,A> {

     void completed(V result, A attachment);

    void failed(Throwable exc, A attachment);

   
    void cancelled(A attachment);
}

 


    其中的泛型参数V表示IO调用的结果,而A是发起调用时传入的attchment。

    在初步介绍完aio引入的类和接口后,我们看看一个典型的tcp服务端是怎么启动的,怎么接受连接并处理读和写,这里引用的代码都是yanf4j 的aio分支中的代码,可以从svn checkout,svn地址: http://yanf4j.googlecode.com/svn/branches/yanf4j-aio

    第一步,创建一个AsynchronousServerSocketChannel,创建之前先创建一个 AsynchronousChannelGroup,上文提到AsynchronousServerSocketChannel可以绑定一个 AsynchronousChannelGroup,那么通过这个AsynchronousServerSocketChannel建立的连接都将同属于一个AsynchronousChannelGroup并共享资源:

Java代码 复制代码
  1. this.asynchronousChannelGroup = AsynchronousChannelGroup   
  2.                     .withCachedThreadPool(Executors.newCachedThreadPool(),   
  3.                             this.threadPoolSize);  
this.asynchronousChannelGroup = AsynchronousChannelGroup
                    .withCachedThreadPool(Executors.newCachedThreadPool(),
                            this.threadPoolSize);

     然后初始化一个AsynchronousServerSocketChannel,通过open方法:

Java代码 复制代码
  1. this.serverSocketChannel = AsynchronousServerSocketChannel   
  2.                 .open(this.asynchronousChannelGroup);  
this.serverSocketChannel = AsynchronousServerSocketChannel
                .open(this.asynchronousChannelGroup);

 

    通过nio 2.0引入的SocketOption类设置一些TCP选项:

Java代码 复制代码
  1. this.serverSocketChannel   
  2.                     .setOption(   
  3.                             StandardSocketOption.SO_REUSEADDR,true);   
  4. this.serverSocketChannel   
  5.                     .setOption(   
  6.                             StandardSocketOption.SO_RCVBUF,16*1024);  
this.serverSocketChannel
                    .setOption(
                            StandardSocketOption.SO_REUSEADDR,true);
this.serverSocketChannel
                    .setOption(
                            StandardSocketOption.SO_RCVBUF,16*1024);

 


    绑定本地地址:

Java代码 复制代码
  1. this.serverSocketChannel   
  2.                     .bind(new InetSocketAddress("localhost",8080), 100);  
this.serverSocketChannel
                    .bind(new InetSocketAddress("localhost",8080), 100);

 

  
    其中的100用于指定等待连接的队列大小(backlog)。完了吗?还没有,最重要的监听工作还没开始,监听端口是为了等待连接上来以便accept产生一个AsynchronousSocketChannel来表示一个新建立的连接,因此需要发起一个accept调用,调用是异步的,操作系统将在连接建立后,将最后的结果——AsynchronousSocketChannel返回给你:

Java代码 复制代码
  1. public void pendingAccept() {   
  2.         if (this.started && this.serverSocketChannel.isOpen()) {   
  3.             this.acceptFuture = this.serverSocketChannel.accept(null,   
  4.                     new AcceptCompletionHandler());   
  5.   
  6.         } else {   
  7.             throw new IllegalStateException("Controller has been closed");   
  8.         }   
  9.     }  
public void pendingAccept() {
        if (this.started && this.serverSocketChannel.isOpen()) {
            this.acceptFuture = this.serverSocketChannel.accept(null,
                    new AcceptCompletionHandler());

        } else {
            throw new IllegalStateException("Controller has been closed");
        }
    }

 


   注意,重复的accept调用将会抛出PendingAcceptException,后文提到的read和write也是如此。accept方法的第一个参数是你想传给CompletionHandler的attchment,第二个参数就是注册的用于回调的CompletionHandler,最后返回结果Future<AsynchronousSocketChannel>。你可以对future做处理,这里采用更推荐的方式就是注册一个CompletionHandler。那么accept的CompletionHandler中做些什么工作呢?显然一个赤裸裸的 AsynchronousSocketChannel是不够的,我们需要将它封装成session,一个session表示一个连接(mina里就叫 IoSession了),里面带了一个缓冲的消息队列以及一些其他资源等。在连接建立后,除非你的服务器只准备接受一个连接,不然你需要在后面继续调用pendingAccept来发起另一个accept请求

Java代码 复制代码
  1. private final class AcceptCompletionHandler implements  
  2.             CompletionHandler<AsynchronousSocketChannel, Object> {   
  3.   
  4.         @Override  
  5.         public void cancelled(Object attachment) {   
  6.             logger.warn("Accept operation was canceled");   
  7.         }   
  8.   
  9.         @Override  
  10.         public void completed(AsynchronousSocketChannel socketChannel,   
  11.                 Object attachment) {   
  12.             try {   
  13.                 logger.debug("Accept connection from "  
  14.                         + socketChannel.getRemoteAddress());   
  15.                 configureChannel(socketChannel);   
  16.                 AioSessionConfig sessionConfig = buildSessionConfig(socketChannel);   
  17.                 Session session = new AioTCPSession(sessionConfig,   
  18.                         AioTCPController.this.configuration   
  19.                                 .getSessionReadBufferSize(),   
  20.                         AioTCPController.this.sessionTimeout);   
  21.                 session.start();   
  22.                 registerSession(session);   
  23.             } catch (Exception e) {   
  24.                 e.printStackTrace();   
  25.                 logger.error("Accept error", e);   
  26.                 notifyException(e);   
  27.             } finally {   
  28.                 <STRONG>pendingAccept</STRONG>();   
  29.             }   
  30.         }   
  31.   
  32.         @Override  
  33.         public void failed(Throwable exc, Object attachment) {   
  34.             logger.error("Accept error", exc);   
  35.             try {   
  36.                 notifyException(exc);   
  37.             } finally {   
  38.                 <STRONG>pendingAccept</STRONG>();   
  39.             }   
  40.         }   
  41.     }  
private final class AcceptCompletionHandler implements
            CompletionHandler<AsynchronousSocketChannel, Object> {

        @Override
        public void cancelled(Object attachment) {
            logger.warn("Accept operation was canceled");
        }

        @Override
        public void completed(AsynchronousSocketChannel socketChannel,
                Object attachment) {
            try {
                logger.debug("Accept connection from "
                        + socketChannel.getRemoteAddress());
                configureChannel(socketChannel);
                AioSessionConfig sessionConfig = buildSessionConfig(socketChannel);
                Session session = new AioTCPSession(sessionConfig,
                        AioTCPController.this.configuration
                                .getSessionReadBufferSize(),
                        AioTCPController.this.sessionTimeout);
                session.start();
                registerSession(session);
            } catch (Exception e) {
                e.printStackTrace();
                logger.error("Accept error", e);
                notifyException(e);
            } finally {
                pendingAccept();
            }
        }

        @Override
        public void failed(Throwable exc, Object attachment) {
            logger.error("Accept error", exc);
            try {
                notifyException(exc);
            } finally {
                pendingAccept();
            }
        }
    }

 

 
    注意到了吧,我们在failed和completed方法中在最后都调用了pendingAccept来继续发起accept调用,等待新的连接上来。有的同学可能要说了,这样搞是不是递归调用,会不会堆栈溢出?实际上不会,因为发起accept调用的线程与CompletionHandler回调的线程并非同一个,不是一个上下文中,两者之间没有耦合关系。要注意到,CompletionHandler的回调共用的是 AsynchronousChannelGroup绑定的线程池,因此千万别在CompletionHandler回调方法中调用阻塞或者长时间的操作,例如sleep,回调方法最好能支持超时,防止线程池耗尽。

    连接建立后,怎么读和写呢?回忆下在nonblocking nio框架中,连接建立后的第一件事是干什么?注册OP_READ事件等待socket可读。异步IO也同样如此,连接建立后马上发起一个异步read调用,等待socket可读,这个是Session.start方法中所做的事情:

Java代码 复制代码
  1. public class AioTCPSession {   
  2.     protected void start0() {   
  3.         pendingRead();   
  4.     }   
  5.   
  6.     protected final void pendingRead() {   
  7.         if (!isClosed() && this.asynchronousSocketChannel.isOpen()) {   
  8.             if (!this.readBuffer.hasRemaining()) {   
  9.                 this.readBuffer = ByteBufferUtils   
  10.                         .increaseBufferCapatity(this.readBuffer);   
  11.             }   
  12.             this.readFuture = this.asynchronousSocketChannel.read(   
  13.                     this.readBuffer, thisthis.readCompletionHandler);   
  14.         } else {   
  15.             throw new IllegalStateException(   
  16.                     "Session Or Channel has been closed");   
  17.         }   
  18.     }   
  19.       
  20. }  
public class AioTCPSession {
    protected void start0() {
        pendingRead();
    }

    protected final void pendingRead() {
        if (!isClosed() && this.asynchronousSocketChannel.isOpen()) {
            if (!this.readBuffer.hasRemaining()) {
                this.readBuffer = ByteBufferUtils
                        .increaseBufferCapatity(this.readBuffer);
            }
            this.readFuture = this.asynchronousSocketChannel.read(
                    this.readBuffer, this, this.readCompletionHandler);
        } else {
            throw new IllegalStateException(
                    "Session Or Channel has been closed");
        }
    }
   
}

 

     AsynchronousSocketChannel的read调用与AsynchronousServerSocketChannel的accept调用类似,同样是非阻塞的,返回结果也是一个Future,但是写的结果是整数,表示写入了多少字节,因此read调用返回的是 Future<Integer>,方法的第一个参数是读的缓冲区,操作系统将IO读到数据拷贝到这个缓冲区,第二个参数是传递给 CompletionHandler的attchment,第三个参数就是注册的用于回调的CompletionHandler。这里保存了read的结果Future,这是为了在关闭连接的时候能够主动取消调用,accept也是如此。现在可以看看read的CompletionHandler的实现:

Java代码 复制代码
  1. public final class ReadCompletionHandler implements  
  2.         CompletionHandler<Integer, AbstractAioSession> {   
  3.   
  4.     private static final Logger log = LoggerFactory   
  5.             .getLogger(ReadCompletionHandler.class);   
  6.     protected final AioTCPController controller;   
  7.   
  8.     public ReadCompletionHandler(AioTCPController controller) {   
  9.         this.controller = controller;   
  10.     }   
  11.   
  12.     @Override  
  13.     public void cancelled(AbstractAioSession session) {   
  14.         log.warn("Session(" + session.getRemoteSocketAddress()   
  15.                 + ") read operation was canceled");   
  16.     }   
  17.   
  18.     @Override  
  19.     public void completed(Integer result, AbstractAioSession session) {   
  20.         if (log.isDebugEnabled())   
  21.             log.debug("Session(" + session.getRemoteSocketAddress()   
  22.                     + ") read +" + result + " bytes");   
  23.         if (result < 0) {   
  24.             session.close();   
  25.             return;   
  26.         }   
  27.         try {   
  28.             if (result > 0) {   
  29.                 session.updateTimeStamp();   
  30.                 session.getReadBuffer().flip();   
  31.                 session.decode();   
  32.                 session.getReadBuffer().compact();   
  33.             }   
  34.         } finally {   
  35.             try {   
  36.                 session.pendingRead();   
  37.             } catch (IOException e) {   
  38.                 session.onException(e);   
  39.                 session.close();   
  40.             }   
  41.         }   
  42.         controller.checkSessionTimeout();   
  43.     }   
  44.   
  45.     @Override  
  46.     public void failed(Throwable exc, AbstractAioSession session) {   
  47.         log.error("Session read error", exc);   
  48.         session.onException(exc);   
  49.         session.close();   
  50.     }   
  51.   
  52. }  
public final class ReadCompletionHandler implements
        CompletionHandler<Integer, AbstractAioSession> {

    private static final Logger log = LoggerFactory
            .getLogger(ReadCompletionHandler.class);
    protected final AioTCPController controller;

    public ReadCompletionHandler(AioTCPController controller) {
        this.controller = controller;
    }

    @Override
    public void cancelled(AbstractAioSession session) {
        log.warn("Session(" + session.getRemoteSocketAddress()
                + ") read operation was canceled");
    }

    @Override
    public void completed(Integer result, AbstractAioSession session) {
        if (log.isDebugEnabled())
            log.debug("Session(" + session.getRemoteSocketAddress()
                    + ") read +" + result + " bytes");
        if (result < 0) {
            session.close();
            return;
        }
        try {
            if (result > 0) {
                session.updateTimeStamp();
                session.getReadBuffer().flip();
                session.decode();
                session.getReadBuffer().compact();
            }
        } finally {
            try {
                session.pendingRead();
            } catch (IOException e) {
                session.onException(e);
                session.close();
            }
        }
        controller.checkSessionTimeout();
    }

    @Override
    public void failed(Throwable exc, AbstractAioSession session) {
        log.error("Session read error", exc);
        session.onException(exc);
        session.close();
    }

}

 

   如果IO读失败,会返回失败产生的异常,这种情况下我们就主动关闭连接,通过session.close()方法,这个方法干了两件事情:关闭channel和取消read调用:

Java代码 复制代码
  1. if (null != this.readFuture) {   
  2.             this.readFuture.cancel(true);   
  3.         }   
  4. this.asynchronousSocketChannel.close();  
if (null != this.readFuture) {
            this.readFuture.cancel(true);
        }
this.asynchronousSocketChannel.close();

 

   在读成功的情况下,我们还需要判断结果result是否小于0,如果小于0就表示对端关闭了,这种情况下我们也主动关闭连接并返回。如果读到一定字节,也就是result大于0的情况下,我们就尝试从读缓冲区中decode出消息,并派发给业务处理器的回调方法,最终通过pendingRead继续发起read调用等待socket的下一次可读。可见,我们并不需要自己去调用channel来进行IO读,而是操作系统帮你直接读到了缓冲区,然后给你一个结果表示读入了多少字节,你处理这个结果即可。而nonblocking IO框架中,是reactor通知用户线程socket可读了,然后用户线程自己去调用read进行实际读操作。这里还有个需要注意的地方,就是decode出来的消息的派发给业务处理器工作最好交给一个线程池来处理,避免阻塞group绑定的线程池。
 
   IO写的操作与此类似,不过通常写的话我们会在session中关联一个缓冲队列来处理,没有完全写入或者等待写入的消息都存放在队列中,队列为空的情况下发起write调用:

Java代码 复制代码
  1. protected void write0(WriteMessage message) {   
  2.       boolean needWrite = false;   
  3.       synchronized (this.writeQueue) {   
  4.           needWrite = this.writeQueue.isEmpty();   
  5.           this.writeQueue.offer(message);   
  6.       }   
  7.       if (needWrite) {   
  8.           pendingWrite(message);   
  9.       }   
  10.   }   
  11.   
  12.   protected final void pendingWrite(WriteMessage message) {   
  13.       message = preprocessWriteMessage(message);   
  14.       if (!isClosed() && this.asynchronousSocketChannel.isOpen()) {   
  15.           this.asynchronousSocketChannel.write(message.getWriteBuffer(),   
  16.                   thisthis.writeCompletionHandler);   
  17.       } else {   
  18.           throw new IllegalStateException(   
  19.                   "Session Or Channel has been closed");   
  20.       }   
  21.   }  
  protected void write0(WriteMessage message) {
        boolean needWrite = false;
        synchronized (this.writeQueue) {
            needWrite = this.writeQueue.isEmpty();
            this.writeQueue.offer(message);
        }
        if (needWrite) {
            pendingWrite(message);
        }
    }

    protected final void pendingWrite(WriteMessage message) {
        message = preprocessWriteMessage(message);
        if (!isClosed() && this.asynchronousSocketChannel.isOpen()) {
            this.asynchronousSocketChannel.write(message.getWriteBuffer(),
                    this, this.writeCompletionHandler);
        } else {
            throw new IllegalStateException(
                    "Session Or Channel has been closed");
        }
    }

 

    write调用返回的结果与read一样是一个Future<Integer>,而write的CompletionHandler处理的核心逻辑大概是这样:

Java代码 复制代码
  1. @Override  
  2.     public void completed(Integer result, AbstractAioSession session) {   
  3.         if (log.isDebugEnabled())   
  4.             log.debug("Session(" + session.getRemoteSocketAddress()   
  5.                     + ") writen " + result + " bytes");   
  6.                    
  7.         WriteMessage writeMessage;   
  8.         Queue<WriteMessage> writeQueue = session.getWriteQueue();   
  9.         synchronized (writeQueue) {   
  10.             writeMessage = writeQueue.peek();   
  11.             if (writeMessage.getWriteBuffer() == null  
  12.                     || !writeMessage.getWriteBuffer().hasRemaining()) {   
  13.                 writeQueue.remove();   
  14.                 if (writeMessage.getWriteFuture() != null) {   
  15.                     writeMessage.getWriteFuture().setResult(Boolean.TRUE);   
  16.                 }   
  17.                 try {   
  18.                     session.getHandler().onMessageSent(session,   
  19.                             writeMessage.getMessage());   
  20.                 } catch (Exception e) {   
  21.                     session.onException(e);   
  22.                 }   
  23.                 writeMessage = writeQueue.peek();   
  24.             }   
  25.         }   
  26.         if (writeMessage != null) {   
  27.             try {   
  28.                 session.pendingWrite(writeMessage);   
  29.             } catch (IOException e) {   
  30.                 session.onException(e);   
  31.                 session.close();   
  32.             }   
  33.         }   
  34.     }  
@Override
    public void completed(Integer result, AbstractAioSession session) {
        if (log.isDebugEnabled())
            log.debug("Session(" + session.getRemoteSocketAddress()
                    + ") writen " + result + " bytes");
                
        WriteMessage writeMessage;
        Queue<WriteMessage> writeQueue = session.getWriteQueue();
        synchronized (writeQueue) {
            writeMessage = writeQueue.peek();
            if (writeMessage.getWriteBuffer() == null
                    || !writeMessage.getWriteBuffer().hasRemaining()) {
                writeQueue.remove();
                if (writeMessage.getWriteFuture() != null) {
                    writeMessage.getWriteFuture().setResult(Boolean.TRUE);
                }
                try {
                    session.getHandler().onMessageSent(session,
                            writeMessage.getMessage());
                } catch (Exception e) {
                    session.onException(e);
                }
                writeMessage = writeQueue.peek();
            }
        }
        if (writeMessage != null) {
            try {
                session.pendingWrite(writeMessage);
            } catch (IOException e) {
                session.onException(e);
                session.close();
            }
        }
    }

 


   compete方法中的result就是实际写入的字节数,然后我们判断消息的缓冲区是否还有剩余,如果没有就将消息从队列中移除,如果队列中还有消息,那么继续发起write调用。

   重复一下,这里引用的代码都是yanf4j aio分支中的源码,感兴趣的朋友可以直接check out出来看看: http://yanf4j.googlecode.com/svn/branches/yanf4j-aio
   在引入了aio之后,java对于网络层的支持已经非常完善,该有的都有了,java也已经成为服务器开发的首选语言之一。java的弱项在于对内存的管理上,由于这一切都交给了GC,因此在高性能的网络服务器上还是Cpp的天下。java这种单一堆模型比之erlang的进程内堆模型还是有差距,很难做到高效的垃圾回收和细粒度的内存管理。

   这里仅仅是介绍了aio开发的核心流程,对于一个网络框架来说,还需要考虑超时的处理、缓冲buffer的处理、业务层和网络层的切分、可扩展性、性能的可调性以及一定的通用性要求。

分享到:
评论

相关推荐

    python中aioysql(异步操作MySQL)的方法

    python异步IO初探 探索异步IO执之前,先说说IO的种类 1.阻塞IO最简单,即读写数据时,需要等待操作完成,才能继续执行。进阶的做法就是用多线程来处理需要IO的部分,缺点是开销会有些大。 2.非阻塞IO,即读写数据时...

    Nginx开发从入门到精通

    - **aio原理**:Nginx支持异步IO操作,能够显著提高I/O密集型任务的处理速度。 - **锁实现**:Nginx内部使用了多种锁机制来保护共享资源,确保并发访问时的数据一致性。 - **基本数据结构**:Nginx使用了一系列定制...

    NX二次开发-属性操作(创建与编辑)

    目前关于属性操作的创建于编辑主要有新旧两个版本,旧版本主要使用UF_ATTR_assign()函数,新版本主要使用UF_ATTR_set_user_attribute()函数。注意在使用新版本是需要初始化。

    编书 机械制图习题集(属性块图框)出版社.dwg

    编书 机械制图习题集(属性块图框)出版社.dwg

    毕业设计物联网实战项目基于 ESP8266 及 1.3 寸 TFT 实现的华为太空人时钟.zip

    【项目资源】: 物联网项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    【机器人控制】基于MATLAB的不同神经网络控制器性能对比:机器人手臂模型的NNPC、MRC和NARMA-L2控制策略分析(复现论文或解答问题,含详细可运行代码及解释)

    内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。

    《基于YOLOv8的雪场设备识别系统》(包含源码、完整数据集、可视化界面、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

    资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。

    (源码)基于Python的微信智能聊天机器人.zip

    # 基于Python的微信智能聊天机器人 ## 项目简介 本项目是一个基于Python的微信智能聊天机器人框架,旨在通过ChatGPT的强大对话能力,将微信打造成一个智能助手。该机器人支持私聊和群聊的智能回复、语音识别、图片生成、插件扩展等功能,能够与好友进行多轮对话,并提供丰富的交互体验。项目支持多端部署,包括个人微信、微信公众号和企业微信应用。 ## 项目的主要特性和功能 多端部署支持个人微信、微信公众号和企业微信应用等多种部署方式。 智能对话支持私聊和群聊的智能回复,具备多轮会话上下文记忆功能,支持GPT3、GPT3.5、GPT4等模型。 语音识别可识别语音消息并通过文字或语音回复,支持Azure、Baidu、Google、OpenAI等多种语音模型。 图片生成支持图片生成和图生图功能(如照片修复),可选择DALLE、Stable Diffusion、Replicate等模型。

    Android毕设实战项目基于Android的健身信息管理系统.zip

    【项目资源】: 适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    《基于YOLOv8的医疗废物分类系统》(包含源码、完整数据集、可视化界面、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

    资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。

    毕业设计物联网实战项目基于腾讯云物联网开发平台的智能台灯,全套腾讯解决方案,可使用微信小程序远程控制.zip

    【项目资源】: 物联网项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    scipy-0.11.0.tar.gz

    该资源为scipy-0.11.0.tar.gz,欢迎下载使用哦!

    【机械故障仿真】PT500PLUS平行轴齿轮箱故障测试台Machine Vibration & Gearbox Simulator(机械振动-齿轮箱模拟器):转子及齿轮传动故障模拟与数据采集系统设计

    内容概要:PT500PLUS平行轴齿轮箱故障测试台是由瓦伦尼安(VALENIAN)Machine Vibration & Gearbox Simulator(机械振动-齿轮箱模拟器)开发的专业机械故障仿真测试设备。该测试台旨在模拟和研究转子、齿轮传动、轴承及电机系统中的多种常见故障,包括但不限于轴不对中、转子不平衡、机械松动、轴承故障、齿轮故障(如点蚀、磨损、断齿等)以及电机故障(如转子不平衡、轴承故障、匝间短路等)。测试台配备有先进的传感器和数据采集系统,能够实时采集并分析振动、噪声、转速、扭矩等参数,提供多通道同步信号采集与频谱分析功能。此外,测试台还配备了10寸触摸屏、PLC智能控制系统和急停按钮,确保操作简便和安全。 适用人群:机械工程专业师生、科研人员以及从事机械故障诊断和维护的技术人员。 使用场景及目标:①用于高校和科研机构的教学和研究,帮助学生和研究人员深入理解机械故障的机理;②为企业提供故障诊断和预防性维护的解决方案,提高设备可靠性和运行效率;③通过模拟真实工况下的故障,进行轴承寿命预测性试验,研究轴承故障机制与轴承载荷、转速、振动、温度之间的关系。 其他说明:测试台结构紧凑,模块化设计,便于移动和维护。它不仅支持多种传感器的安装和数据采集,还提供了丰富的分析软件功能,如FFT频谱分析、轴心轨迹图、小波分析等,支持数据导出和二次开发,适用于各种复杂的研究和应用需求。

    ### 【5G智慧文旅】商业街、水街信息集成方案:5G技术赋能全方位智慧化升级与游客体验优化

    内容概要:本文档详细介绍了XXX5G特色商业街的规划设计方案,旨在通过5G技术与物联网等前沿科技的融合,全方位提升游客体验感和街区运营效率。首先,基础信息系统涵盖综合管理智慧平台、统一结算系统、5G视频智慧安防监控系统等多个子系统,实现多系统协同管理和数据安全保障。其次,特色应用方面,推出5G短信服务、5G智慧机器人、5G无人巡逻车、5G+XR时空走廊、5G+元宇宙体验馆等项目,将尖端科技与深厚文化底蕴巧妙结合,创新文旅体验形式。最后,通过5G高清视频直播与分享、5G+高空文旅等举措,进一步提升水街的影响力和吸引力。 适用人群:本方案适用于文旅项目规划者、商业街运营管理者、信息技术从业者以及对智慧城市建设感兴趣的各界人士。 使用场景及目标:①为商业街提供全面的智慧化升级方案,涵盖基础信息系统和特色应用两大部分;②通过5G技术赋能,实现高效运营管理和沉浸式游客体验;③推动文旅产业创新发展,促进地方经济繁荣和社会进步。 其他说明:该方案不仅关注技术实现,更重视用户体验和服务质量,强调文化传承与科技创新的有机结合,致力于打造具有国际影响力的智慧文旅新地标。

    【更新至2023年】2000-2023年中国气候政策不确定性指数(全国、省、市三个层面)

    【更新至2023年】2000-2023年中国气候政策不确定性指数数据(全国、省、市三个层面) 1.时间:2000-2023年 2.来源:使用人工审计和深度学习算法MacBERT模型,基于中国《人民日报》《光明日报》《经济日报》《环球时报》《科技日报》《中国新闻社》等6家主流报纸中的1,755,826篇文章,构建了2000年1月至2023年12月的中国全国、省份和主要城市层面的CCPU指数。研究框架包括六个部分:数据收集、清洗数据、人工审计、模型构建、指数计算与标准化以及技术验证。 3.范围:中国、省、市三个层次 4.参考文献:Ma, Y. R., Liu, Z., Ma, D., Zhai, P., Guo, K., Zhang, D., & Ji, Q. (2023). A news-based climate policy uncertainty index for China. Scientific Data, 10(1), 881. 5.时间跨度:全国层面:日度、月度、年度;省级层面:月度、年度;地级市层面:月度、年度

    毕设单片机实战项目基于STM32F401和ESP8266的硬件开源物连网平台.zip

    【项目资源】: 单片机项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    机械工程BTS200轴承寿命预测测试台Bearing Prognostics Simulator:多功能加载与润滑系统设计及应用反映了文档的核心内容

    内容概要:BTS200轴承寿命预测测试台是一款专为研究轴承寿命预测及加速磨损过程设计的实验设备。该设备结构灵活,支持不同尺寸和类型的轴承测试,最大负载可达15000N。测试台采用先进的伺服电缸加载系统,能够在轴向和径向上精确施加载荷,并配备高精度测力传感器和温度监测系统,确保实验数据的准确性。此外,BTS200还拥有油液循环润滑系统,通过油膜减少摩擦和磨损,保持机械部件在适宜的工作温度范围内,延长轴承寿命。Bearing Prognostics Simulator(实验台可通过触控屏操作,支持多速运行(0-3000RPM),并具备过热保护机制,在温度超过150℃时自动停机。BTS200广泛应用于轴承寿命预测、故障机制研究以及剩余寿命预测模型的开发。 适合人群:轴承设计研发人员、机械工程研究人员、高校实验室师生及相关领域工程师。 使用场景及目标:①研究轴承在不同载荷和转速条件下的磨损特性;②开发和验证轴承剩余寿命预测模型;③探索轴承故障机制及其对系统性能的影响;④评估不同润滑方式对轴承寿命的影响。 其他说明:BTS200测试台不仅提供硬件支持,还配备了完整的软件控制系统,包括PLC闭环控制、温度监测反馈模块等,确保实验过程的稳定性和数据的可靠性。此外,设备支持快速安装和拆卸测试轴承,便于实验操作。

    AXI Memory Mapped to PCI Express (PCIe) Gen2 v2.9

    xilinx基于PCIE IP的PCIE Bridge IP操作手册

    毕设单片机实战项目基于 STM32F407+ESP8266+RFID 的模拟公交车刷卡收费系统(物联网版).zip

    【项目资源】: 单片机项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    使用教程 (1).mov

    使用教程 (1).mov

Global site tag (gtag.js) - Google Analytics