一、MapReduce程序一般通过键值对的形式来处理数据
Map:(K1,V1)----->List(K2,V2)
Reduce:(K2,List(V2))------>List(K3,V3)
二、数据流动
1、 输入数据通过split的方式,被分发到各个节点上
2、每个Map任务在一个split上面进行处理。
3、Mapper任务输出中间数据
4、在组合过程中(shuffle),节点之间进行数据交换
5、拥有同样key值的中间数据(键值对)被送到同样的reducer任务中
6、reduce执行任务后,输出结果。
注意前四步为Map过程,后两步为Reduce过程
三、MapReduce程序使用的数据类型
由于MapReduce框架需要将数据在集群中进行移动,所以框架定义了一种序列化的键值对类型,即keys和values必须能够进行序列化。所以实现了Writable接口的对象可以充当values,实现了WritableComparalbe<T>接口的对象可以充当keys或values
Hadoop中实现了WritableComparable<T>接口的类有如下几个:
BooleanWritable、ByteWritable、DoubleWritable、FloatWritable、IntWritable、LongWritable、Text、NullWritable。
四:Mapper
Hadoop中的mapper,.必须实现Mapper接口并且继承MapReduceBase类, MapReduceBase类是mappers和reduces类的基类,它包含了构造方法和析构方法。
void configure(JobConf job):提取配置文件或程序中设置的参数值
void close() :任务是关闭数据库连接,关闭文件等等
Mapper接口中map函数的原型
Void map(K1 key,V1 value,OutputCollector<K2,V2> output,Reporter reporter) throws IOException
Hadoop中实现的Mapper接口的常用类
IdentityMapper<K,V>: 实现了Mapper<K,V,K,V> ,直接将map的输入转换为输出。
InverseMapper<K,V> 实现了Mapper<K,V,V,K>,反转键值对。
RegexMapper<K> 实现了Mapper<K,TEXT,TEXT,LongWritable>,为每一个匹配的正则表达式生成一个(match,1)键值对
TokenCountMapper<K> 实现了Mapper<K,TEXT,TEXT,LongWritable>,当输入值被标记,那么生成一个(token,1)键值对
五、Reducer
Hadoop中的mapper,.必须实现Reducer接口并且继承MapReduceBase类
Reducer接口中reduce方法的原型为:
void reduce(K2,key,Iterator<V2> values,
OutputCollector<K3,V3> output,Reporter reporter) throws IOException
Reducer任务接口接收到许多mapper任务传来的数据,首先将数据进行排序,然后根据key值进行分组,最后调用reduce方法
Hadoop中实现的Reducer接口的常用类
IdentityReducer<K,V>:直接将输入转换为输出
LongSumReducer<K> 实现了Reducer<K,LongWritable,K,LongWritable> ,对于同样的key值进行value值的相加。
<!--EndFragment-->
分享到:
相关推荐
IncompatibleClassChangeError(解决方案).md
智慧工地,作为现代建筑施工管理的创新模式,以“智慧工地云平台”为核心,整合施工现场的“人机料法环”关键要素,实现了业务系统的协同共享,为施工企业提供了标准化、精益化的工程管理方案,同时也为政府监管提供了数据分析及决策支持。这一解决方案依托云网一体化产品及物联网资源,通过集成公司业务优势,面向政府监管部门和建筑施工企业,自主研发并整合加载了多种工地行业应用。这些应用不仅全面连接了施工现场的人员、机械、车辆和物料,实现了数据的智能采集、定位、监测、控制、分析及管理,还打造了物联网终端、网络层、平台层、应用层等全方位的安全能力,确保了整个系统的可靠、可用、可控和保密。 在整体解决方案中,智慧工地提供了政府监管级、建筑企业级和施工现场级三类解决方案。政府监管级解决方案以一体化监管平台为核心,通过GIS地图展示辖区内工程项目、人员、设备信息,实现了施工现场安全状况和参建各方行为的实时监控和事前预防。建筑企业级解决方案则通过综合管理平台,提供项目管理、进度管控、劳务实名制等一站式服务,帮助企业实现工程管理的标准化和精益化。施工现场级解决方案则以可视化平台为基础,集成多个业务应用子系统,借助物联网应用终端,实现了施工信息化、管理智能化、监测自动化和决策可视化。这些解决方案的应用,不仅提高了施工效率和工程质量,还降低了安全风险,为建筑行业的可持续发展提供了有力支持。 值得一提的是,智慧工地的应用系统还围绕着工地“人、机、材、环”四个重要因素,提供了各类信息化应用系统。这些系统通过配置同步用户的组织结构、智能权限,结合各类子系统应用,实现了信息的有效触达、问题的及时跟进和工地的有序管理。此外,智慧工地还结合了虚拟现实(VR)和建筑信息模型(BIM)等先进技术,为施工人员提供了更为直观、生动的培训和管理工具。这些创新技术的应用,不仅提升了施工人员的技能水平和安全意识,还为建筑行业的数字化转型和智能化升级注入了新的活力。总的来说,智慧工地解决方案以其创新性、实用性和高效性,正在逐步改变建筑施工行业的传统管理模式,引领着建筑行业向更加智能化、高效化和可持续化的方向发展。
123
asdjhfjsnlkdmv
该代码实现了基于机器学习的车辆价格预测模型,利用不同回归算法(如线性回归、随机森林回归和 KNN 回归)对车辆的当前价格(current price)进行预测。代码首先进行数据加载与预处理,包括删除无关特征、归一化处理等;然后使用不同的机器学习模型进行训练,并评估它们的表现(通过 R²、MAE、MSE 等指标);最后通过可视化工具对模型预测效果进行分析。目的是为车辆价格预测任务找到最合适的回归模型。 适用人群: 数据科学家和机器学习工程师:对于需要进行回归建模和模型选择的从业者,尤其是对车辆数据或类似领域有兴趣的。 企业数据分析师:在汽车行业或二手车市场中,需要对车辆价格进行预测和分析的专业人员。 机器学习学习者:希望学习如何使用 Python 实现机器学习模型、数据预处理和评估的初学者或中级学习者。 使用场景及目标: 汽车定价与估值:用于为汽车或二手车定价,尤其是当需要预测车辆的当前市场价格时。 汽车行业市场分析:通过数据分析和回归预测,帮助汽车销售商、经销商或市场分析师预测未来的市场价格趋势。 二手车市场:为二手车买卖双方提供价格参考,帮助制定合理的交易价格。
基于模型预测控制(mpc)的车辆道,车辆轨迹跟踪,道轨迹为五次多项式,matlab与carsim联防控制
StoreError解决办法.md
白色精致风格的个人简历模板下载.zip
白色宽屏风格的房产介绍服务网站模板下载.zip
基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目),本资源中的源码都是经过本地编译过可运行的,评审分达到98分,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。 基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)基于Python实现的医疗知识图谱的知识问答系统源码毕业设计(高分项目)基于
白色宽屏风格的生物医疗实验室企业网站模板.rar
C# 操作Access数据库
NSFileSystemError如何解决.md
白色简洁风格的商户销售统计图源码下载.zip
白色简洁风格的室内设计整站网站源码下载.zip
侧吸式油烟机sw16可编辑全套技术资料100%好用.zip
在 MATLAB 中进行人脸识别可以通过使用内置的工具箱和函数来实现。MATLAB 提供了计算机视觉工具箱(Computer Vision Toolbox),其中包含了用于图像处理、特征提取以及机器学习的函数,可以用来构建一个人脸识别系统。下面是一个简化的教程,介绍如何使用 MATLAB 进行人脸识别。 ### 准备工作 1. **安装必要的工具箱**:确保你已经安装了“计算机视觉工具箱”和“深度学习工具箱”。如果没有,可以通过 MATLAB 的附加功能管理器安装它们。 2. **获取数据集**:准备一个包含不同个体的人脸图像的数据集。你可以自己收集图片,或者使用公开的数据集如 AT&T Faces Database 或 LFW (Labeled Faces in the Wild) 数据集。 3. **安装预训练模型(可选)**:如果你打算使用深度学习方法,MATLAB 提供了一些预训练的卷积神经网络(CNN)模型,比如 AlexNet, GoogLeNet 等,可以直接加载并用于特征提取或分类。 ### 步骤指南 #### 1. 加载人脸检测器 ```matlab face
白色宽屏风格的建筑设计公司企业网站源码下载.zip
智慧工地,作为现代建筑施工管理的创新模式,以“智慧工地云平台”为核心,整合施工现场的“人机料法环”关键要素,实现了业务系统的协同共享,为施工企业提供了标准化、精益化的工程管理方案,同时也为政府监管提供了数据分析及决策支持。这一解决方案依托云网一体化产品及物联网资源,通过集成公司业务优势,面向政府监管部门和建筑施工企业,自主研发并整合加载了多种工地行业应用。这些应用不仅全面连接了施工现场的人员、机械、车辆和物料,实现了数据的智能采集、定位、监测、控制、分析及管理,还打造了物联网终端、网络层、平台层、应用层等全方位的安全能力,确保了整个系统的可靠、可用、可控和保密。 在整体解决方案中,智慧工地提供了政府监管级、建筑企业级和施工现场级三类解决方案。政府监管级解决方案以一体化监管平台为核心,通过GIS地图展示辖区内工程项目、人员、设备信息,实现了施工现场安全状况和参建各方行为的实时监控和事前预防。建筑企业级解决方案则通过综合管理平台,提供项目管理、进度管控、劳务实名制等一站式服务,帮助企业实现工程管理的标准化和精益化。施工现场级解决方案则以可视化平台为基础,集成多个业务应用子系统,借助物联网应用终端,实现了施工信息化、管理智能化、监测自动化和决策可视化。这些解决方案的应用,不仅提高了施工效率和工程质量,还降低了安全风险,为建筑行业的可持续发展提供了有力支持。 值得一提的是,智慧工地的应用系统还围绕着工地“人、机、材、环”四个重要因素,提供了各类信息化应用系统。这些系统通过配置同步用户的组织结构、智能权限,结合各类子系统应用,实现了信息的有效触达、问题的及时跟进和工地的有序管理。此外,智慧工地还结合了虚拟现实(VR)和建筑信息模型(BIM)等先进技术,为施工人员提供了更为直观、生动的培训和管理工具。这些创新技术的应用,不仅提升了施工人员的技能水平和安全意识,还为建筑行业的数字化转型和智能化升级注入了新的活力。总的来说,智慧工地解决方案以其创新性、实用性和高效性,正在逐步改变建筑施工行业的传统管理模式,引领着建筑行业向更加智能化、高效化和可持续化的方向发展。
履带车底盘sw16全套技术资料100%好用.zip