`

Deep learning的一些教程[rz]

 
阅读更多

 

转载自http://baojie.org/blog/2013/01/27/deep-learning-tutorials/

 

Stanford Deep Learning wiki: http://deeplearning.stanford.edu/wiki/index.php/Main_Page

 

几个不错的深度学习教程,基本都有视频和演讲稿。附两篇综述文章和一副漫画。还有一些以后补充。

Jeff Dean 2013 @ Stanford

jeffdean

http://i.stanford.edu/infoseminar/dean.pdf

一个对DL能干什么的入门级介绍,主要涉及Google在语音识别、图像处理和自然语言处理三个方向上的一些应用。参《Spanner and Deep Learning》(2013-01-19)

Hinton 2009

hinton2009

A tutorial on Deep Learning

Slides http://videolectures.net/site/normal_dl/tag=52790/jul09_hinton_deeplearn.pdf

Video http://videolectures.net/jul09_hinton_deeplearn/  (3 hours)

从神经网络的背景来分析DL,为什么要有DL说得很清楚。对DL的基本模型结构也说得很清楚。十分推荐

更多Hinton的教程 http://www.cs.toronto.edu/~hinton/nntut.html

斯坦福的Deep Learning公开课(2012)

Samy Bengio, Tom Dean and Andrew Ng

http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=DeepLearning

教学语言是Matlab。

参2011年的课程CS294A/CS294W  Deep Learning and Unsupervised Feature Learning

更多的斯坦福工作: Deep Learning in Natural Language Processing

deeplearning

NIPS 2009 tutorial

nips09_collobert_weston_dlnl_Page_002.480
Deep Learning for Natural Language Processing, 2009 tutorial by Ronan Collobert (senna author) 

这个介绍了DL在三个方向上的应用:tagging (parsing), semantic search, concept labeling

Ronan Collobert的Senna是一个c的深度学习实现,只有2000多行代码

ACL 2012 tutorial

acl2012

Deep Learning for NLP (without Magic) 

by Richard Socher, Yoshua Bengio and Chris Manning 

Video: http://www.youtube.com/watch?v=IF5tGEgRCTQ&list=PL4617D0E28A5781B0

Kai Yu’s Tutorial

On November 26, 2012
Title: “A Tutorial on Deep Learning” 
Abstract: 
In the past 30 years, tremendous progress has been made in building effective classification models. Despite the success, we have to realize that, in major AI challenges, the key bottleneck is not the quality of classifiers but that of features. Since 2006, learning high-level features using deep architectures has become a big wave of new learning paradigms. In recent two years, performance breakthrough was reported in both image and speech recognition tasks, indicating deep learning are not something ignorable. In this talk, I will walk through the recent works and key building blocks, e.g., sparse coding, RBMs, auto-encoders, etc. and list the major research topics, including modeling and computational issues. In the end, I will discuss what might be interesting topics for future research. 
Bio of Dr. Kai Yu: 
余 凯任百度技术副总监,多媒体部负责人,主要负责公司在语音,图像,音频等领域面向互联网和移动应用的技术研发。加盟百度前,余凯博士在美国NEC研究院担 任Media Analytics部门主管(Department Head),领导团队在机器学习、图像识别、多媒体检索、视频监控,以及数据挖掘和人机交互等方面的产品技术研发。此前他曾在西门子公司任Senior Research Scientist。2011年曾在斯坦福大学计算机系客座主讲课程“CS121: 人工智能概论”。他在NIPS, ICML, CVPR, ICCV, ECCV,SIGIR, SIGKDD,TPAMI,TKDE等会议和杂志上发表了70多篇论文,H-index=28,曾担任机器学习国际会议ICML10, ICML11, NIPS11, NIPS12的Area Chair. 2012年他被评为中关村高端领军人才和北京市海聚计划高层次海外人才。 

Slides link: http://pan.baidu.com/share/link?shareid=136269&uk=2267174042[1] 

Video link: KaiYu_report.mp4 (519.2 MB) 

Theano Deep Learning Tutorial

这个是实战, 如何用Python实现深度学习

http://deeplearning.net/tutorial/

Survey Papers

很多,不过初学看这两篇应该就够了

Yoshua Bengio, Aaron Courville, Pascal Vincent. (2012) Representation Learning: A Review and New Perspectives

Yoshua Bengio (2009). Learning Deep Architectures for AI.

更多

最后来个漫画

Deep Learning虽好,也要牢记它的局限

c479cc50-46a0-4580-bbb7-bdf0cf07ce5d (1)

分享到:
评论

相关推荐

    deeplearning4j-nn-1.0.0-M1.1-API文档-中文版.zip

    赠送jar包:deeplearning4j-nn-1.0.0-M1.1.jar; 赠送原API文档:deeplearning4j-nn-1.0.0-M1.1-javadoc.jar; 赠送源代码:deeplearning4j-nn-1.0.0-M1.1-sources.jar; 赠送Maven依赖信息文件:deeplearning4j-nn-...

    ENVI Deep Learning V1.0深度学习操作教程_202003.pdf

    ### ENVI Deep Learning简介 - **深度学习定义**:深度学习是机器学习的一种高级形式,能够使系统通过多层神经网络自动发现数据的特征表示,并持续改进预测精度。 - **在遥感中的应用**:深度学习在遥感领域被用来...

    uncertainty in deep learning

    learning, casting recent deep learning tools as Bayesian models without changing either the models or the optimisation. In the first part of this thesis we develop the theory for such tools, providing...

    deeplearning4j基础教程及源码

    dl4j基础教程 配套视频:https://space.bilibili.com/327018681/#/

    Deep Learning 教程中文版

    深度学习是现代人工智能领域的核心部分,它通过模拟人脑神经网络的工作原理,让计算机能够从大量...通过阅读《Deep Learning 教程中文版》的翻译版,你将能够深入了解这个激动人心的领域,并开启自己的深度学习之旅。

    Deep Learning in Python

    Deep Learning in Python: Master Data Science and Machine Learning with Modern Neural Networks written in Python, Theano, and TensorFlow (Machine Learning in Python) by LazyProgrammer English | March ...

    Python Deep Learning: Exploring deep learning techniques, neural network

    Exploring an advanced state of the art deep learning models and its applications using Popular python libraries like Keras, Tensorflow, and Pytorch Key Features • A strong foundation on neural ...

    Deep Learning: Practical Neural Networks with Java 完整高清英文azw3版

    Deep Learning: Practical Neural Networks with Java by Yusuke Sugomori English | 8 Jun. 2017 | ASIN: B071GC77N9 | 1057 Pages | AZW3 | 20.28 MB Build and run intelligent applications by leveraging key ...

    MATLAB Deep Learning: With Machine Learning, Neural Networks and A I

    Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then ...

    deeplearning学习教程英文版

    deeplearning学习教程英文版是一本全面讲解深度学习的教材,提供了对深度学习各个知识点的详细介绍,并且辅以Python编程示例。本书主要覆盖了深度学习的基础知识、模型构建、编程实践和一些进阶技巧。下面详细阐释书...

    R Deep Learning Cookbook

    R Deep Learning Cookbook by Dr. PKS Prakash English | 4 Aug. 2017 | ISBN: 1787121089 | ASIN: B071NDMWN2 | 288 Pages | AZW3 | 6.91 MB Powerful, independent recipes to build deep learning models in ...

    Deep Learning with Python: A Hands-on Introduction

    Discover the practical aspects of implementing deep-learning solutions using the rich Python ecosystem. This book bridges the gap between the academic state-of-the-art and the industry state-of-the-...

    基于DeepLearning4j框架提供的lstm神经网络实现对车流量预测

    【作品名称】:基于DeepLearning4j框架提供的lstm神经网络实现对车流量预测 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目...

    TensorFlow Deep Learning Projects

    TensorFlow Deep Learning Projects: 10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning Leverage the power of Tensorflow to design deep learning ...

    Dive into Deep Learning

    deep learning has taken the world by surprise, driving rapid progress in fields as diverse as computer vision, natural language processing, automatic speech recognition, reinforcement learning, and ...

    Deep Learning for Beginners

    Chapter 1 starts with the relationship between Machine Learning and Deep Learning, followed by problem solving strategies and fundamental limitations of Machine Learning. The detailed techniques are ...

Global site tag (gtag.js) - Google Analytics