上一篇讲了服务器端的实现, 这一篇就是客户端的实现.
服务器实现参考:《C#如何利用SocketAsyncEventArgs实现高效能TCPSocket通信 (服务器实现)》
与服务器不同的是客户端的实现需要多个SocketAsyncEventArgs共同协作,至少需要两个:接收的只需要一个,发送的需要一个,也可以多个,这在多线程中尤为重要,接下来说明。
客户端一般需要数据的时候,就要发起请求,在多线程环境中,请求服务器一般不希望列队等候,这样会大大拖慢程序的处理。如果发送数据包的SocketAsyncEventArgs只有一个,且当他正在工作的时候, 下一个请求也来访问,这时会抛出异常, 提示当前的套接字正在工作, 所以这不是我们愿意看到, 唯有增加SocketAsyncEventArgs对象来解决。 那么接下来的问题就是我怎么知道当前的SocketAsyncEventArgs对象是否正在工作呢. 很简单,我们新建一个MySocketEventArgs类来继承它。
using System; using System.Collections.Generic; using System.Linq; using System.Net.Sockets; using System.Text; namespace Plates.Client.Net { class MySocketEventArgs : SocketAsyncEventArgs { /// <summary> /// 标识,只是一个编号而已 /// </summary> public int ArgsTag { get; set; } /// <summary> /// 设置/获取使用状态 /// </summary> public bool IsUsing { get; set; } } }
接下来,我们还需要BufferManager类,这个类已经在服务端贴出来了,与服务端是一样的, 再贴一次:
using System; using System.Collections.Generic; using System.Linq; using System.Net.Sockets; using System.Text; using System.Threading.Tasks; namespace Plates.Client.Net { class BufferManager { int m_numBytes; // the total number of bytes controlled by the buffer pool byte[] m_buffer; // the underlying byte array maintained by the Buffer Manager Stack<int> m_freeIndexPool; // int m_currentIndex; int m_bufferSize; public BufferManager(int totalBytes, int bufferSize) { m_numBytes = totalBytes; m_currentIndex = 0; m_bufferSize = bufferSize; m_freeIndexPool = new Stack<int>(); } // Allocates buffer space used by the buffer pool public void InitBuffer() { // create one big large buffer and divide that // out to each SocketAsyncEventArg object m_buffer = new byte[m_numBytes]; } // Assigns a buffer from the buffer pool to the // specified SocketAsyncEventArgs object // // <returns>true if the buffer was successfully set, else false</returns> public bool SetBuffer(SocketAsyncEventArgs args) { if (m_freeIndexPool.Count > 0) { args.SetBuffer(m_buffer, m_freeIndexPool.Pop(), m_bufferSize); } else { if ((m_numBytes - m_bufferSize) < m_currentIndex) { return false; } args.SetBuffer(m_buffer, m_currentIndex, m_bufferSize); m_currentIndex += m_bufferSize; } return true; } // Removes the buffer from a SocketAsyncEventArg object. // This frees the buffer back to the buffer pool public void FreeBuffer(SocketAsyncEventArgs args) { m_freeIndexPool.Push(args.Offset); args.SetBuffer(null, 0, 0); } } }
接下来是重点实现了,别的不多说,看代码:
using System; using System.Collections; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Sockets; using System.Text; using System.Threading; using System.Threading.Tasks; namespace Plates.Client.Net { class SocketManager: IDisposable { private const Int32 BuffSize = 1024; // The socket used to send/receive messages. private Socket clientSocket; // Flag for connected socket. private Boolean connected = false; // Listener endpoint. private IPEndPoint hostEndPoint; // Signals a connection. private static AutoResetEvent autoConnectEvent = new AutoResetEvent(false); BufferManager m_bufferManager; //定义接收数据的对象 List<byte> m_buffer; //发送与接收的MySocketEventArgs变量定义. private List<MySocketEventArgs> listArgs = new List<MySocketEventArgs>(); private MySocketEventArgs receiveEventArgs = new MySocketEventArgs(); int tagCount = 0; /// <summary> /// 当前连接状态 /// </summary> public bool Connected { get { return clientSocket != null && clientSocket.Connected; } } //服务器主动发出数据受理委托及事件 public delegate void OnServerDataReceived(byte[] receiveBuff); public event OnServerDataReceived ServerDataHandler; //服务器主动关闭连接委托及事件 public delegate void OnServerStop(); public event OnServerStop ServerStopEvent; // Create an uninitialized client instance. // To start the send/receive processing call the // Connect method followed by SendReceive method. internal SocketManager(String ip, Int32 port) { // Instantiates the endpoint and socket. hostEndPoint = new IPEndPoint(IPAddress.Parse(ip), port); clientSocket = new Socket(hostEndPoint.AddressFamily, SocketType.Stream, ProtocolType.Tcp); m_bufferManager = new BufferManager(BuffSize * 2, BuffSize); m_buffer = new List<byte>(); } /// <summary> /// 连接到主机 /// </summary> /// <returns>0.连接成功, 其他值失败,参考SocketError的值列表</returns> internal SocketError Connect() { SocketAsyncEventArgs connectArgs = new SocketAsyncEventArgs(); connectArgs.UserToken = clientSocket; connectArgs.RemoteEndPoint = hostEndPoint; connectArgs.Completed += new EventHandler<SocketAsyncEventArgs>(OnConnect); clientSocket.ConnectAsync(connectArgs); autoConnectEvent.WaitOne(); //阻塞. 让程序在这里等待,直到连接响应后再返回连接结果 return connectArgs.SocketError; } /// Disconnect from the host. internal void Disconnect() { clientSocket.Disconnect(false); } // Calback for connect operation private void OnConnect(object sender, SocketAsyncEventArgs e) { // Signals the end of connection. autoConnectEvent.Set(); //释放阻塞. // Set the flag for socket connected. connected = (e.SocketError == SocketError.Success); //如果连接成功,则初始化socketAsyncEventArgs if (connected) initArgs(e); } #region args /// <summary> /// 初始化收发参数 /// </summary> /// <param name="e"></param> private void initArgs(SocketAsyncEventArgs e) { m_bufferManager.InitBuffer(); //发送参数 initSendArgs(); //接收参数 receiveEventArgs.Completed += new EventHandler<SocketAsyncEventArgs>(IO_Completed); receiveEventArgs.UserToken = e.UserToken; receiveEventArgs.ArgsTag = 0; m_bufferManager.SetBuffer(receiveEventArgs); //启动接收,不管有没有,一定得启动.否则有数据来了也不知道. if (!e.ConnectSocket.ReceiveAsync(receiveEventArgs)) ProcessReceive(receiveEventArgs); } /// <summary> /// 初始化发送参数MySocketEventArgs /// </summary> /// <returns></returns> MySocketEventArgs initSendArgs() { MySocketEventArgs sendArg = new MySocketEventArgs(); sendArg.Completed += new EventHandler<SocketAsyncEventArgs>(IO_Completed); sendArg.UserToken = clientSocket; sendArg.RemoteEndPoint = hostEndPoint; sendArg.IsUsing = false; Interlocked.Increment(ref tagCount); sendArg.ArgsTag = tagCount; lock (listArgs) { listArgs.Add(sendArg); } return sendArg; } void IO_Completed(object sender, SocketAsyncEventArgs e) { MySocketEventArgs mys = (MySocketEventArgs)e; // determine which type of operation just completed and call the associated handler switch (e.LastOperation) { case SocketAsyncOperation.Receive: ProcessReceive(e); break; case SocketAsyncOperation.Send: mys.IsUsing = false; //数据发送已完成.状态设为False ProcessSend(e); break; default: throw new ArgumentException("The last operation completed on the socket was not a receive or send"); } } // This method is invoked when an asynchronous receive operation completes. // If the remote host closed the connection, then the socket is closed. // If data was received then the data is echoed back to the client. // private void ProcessReceive(SocketAsyncEventArgs e) { try { // check if the remote host closed the connection Socket token = (Socket)e.UserToken; if (e.BytesTransferred > 0 && e.SocketError == SocketError.Success) { //读取数据 byte[] data = new byte[e.BytesTransferred]; Array.Copy(e.Buffer, e.Offset, data, 0, e.BytesTransferred); lock (m_buffer) { m_buffer.AddRange(data); } do { //注意: 这里是需要和服务器有协议的,我做了个简单的协议,就是一个完整的包是包长(4字节)+包数据,便于处理,当然你可以定义自己需要的; //判断包的长度,前面4个字节. byte[] lenBytes = m_buffer.GetRange(0, 4).ToArray(); int packageLen = BitConverter.ToInt32(lenBytes, 0); if (packageLen <= m_buffer.Count - 4) { //包够长时,则提取出来,交给后面的程序去处理 byte[] rev = m_buffer.GetRange(4, packageLen).ToArray(); //从数据池中移除这组数据,为什么要lock,你懂的 lock (m_buffer) { m_buffer.RemoveRange(0, packageLen + 4); } //将数据包交给前台去处理 DoReceiveEvent(rev); } else { //长度不够,还得继续接收,需要跳出循环 break; } } while (m_buffer.Count > 4); //注意:你一定会问,这里为什么要用do-while循环? //如果当服务端发送大数据流的时候,e.BytesTransferred的大小就会比服务端发送过来的完整包要小, //需要分多次接收.所以收到包的时候,先判断包头的大小.够一个完整的包再处理. //如果服务器短时间内发送多个小数据包时, 这里可能会一次性把他们全收了. //这样如果没有一个循环来控制,那么只会处理第一个包, //剩下的包全部留在m_buffer中了,只有等下一个数据包过来后,才会放出一个来. //继续接收 if (!token.ReceiveAsync(e)) this.ProcessReceive(e); } else { ProcessError(e); } } catch (Exception xe) { Console.WriteLine(xe.Message); } } // This method is invoked when an asynchronous send operation completes. // The method issues another receive on the socket to read any additional // data sent from the client // // <param name="e"></param> private void ProcessSend(SocketAsyncEventArgs e) { if (e.SocketError != SocketError.Success) { ProcessError(e); } } #endregion #region read write // Close socket in case of failure and throws // a SockeException according to the SocketError. private void ProcessError(SocketAsyncEventArgs e) { Socket s = (Socket)e.UserToken; if (s.Connected) { // close the socket associated with the client try { s.Shutdown(SocketShutdown.Both); } catch (Exception) { // throws if client process has already closed } finally { if (s.Connected) { s.Close(); } connected = false; } } //这里一定要记得把事件移走,如果不移走,当断开服务器后再次连接上,会造成多次事件触发. foreach (MySocketEventArgs arg in listArgs) arg.Completed -= IO_Completed; receiveEventArgs.Completed -= IO_Completed; if (ServerStopEvent != null) ServerStopEvent(); } // Exchange a message with the host. internal void Send(byte[] sendBuffer) { if (connected) { //先对数据进行包装,就是把包的大小作为头加入,这必须与服务器端的协议保持一致,否则造成服务器无法处理数据. byte[] buff = new byte[sendBuffer.Length + 4]; Array.Copy(BitConverter.GetBytes(sendBuffer.Length), buff, 4); Array.Copy(sendBuffer, 0, buff, 4, sendBuffer.Length); //查找有没有空闲的发送MySocketEventArgs,有就直接拿来用,没有就创建新的.So easy! MySocketEventArgs sendArgs = listArgs.Find(a => a.IsUsing == false); if (sendArgs == null) { sendArgs = initSendArgs(); } lock (sendArgs) //要锁定,不锁定让别的线程抢走了就不妙了. { sendArgs.IsUsing = true; sendArgs.SetBuffer(buff, 0, buff.Length); } clientSocket.SendAsync(sendArgs); } else { throw new SocketException((Int32)SocketError.NotConnected); } } /// <summary> /// 使用新进程通知事件回调 /// </summary> /// <param name="buff"></param> private void DoReceiveEvent(byte[] buff) { if (ServerDataHandler == null) return; //ServerDataHandler(buff); //可直接调用. //但我更喜欢用新的线程,这样不拖延接收新数据. Thread thread = new Thread(new ParameterizedThreadStart((obj) => { ServerDataHandler((byte[])obj); })); thread.IsBackground = true; thread.Start(buff); } #endregion #region IDisposable Members // Disposes the instance of SocketClient. public void Dispose() { autoConnectEvent.Close(); if (clientSocket.Connected) { clientSocket.Close(); } } #endregion } }
好了, 怎么使用, 那是再简单不过的事了, 当然连接同一个服务器的同一端口, 这个类你只需要初始化一次就可以了, 不要创建多个, 这样太浪费资源. 上面是定义了通讯的基础类, 那么接下来就是把相关的方法再包装一下, 做成供前台方便调用的含有静态方法的类就OK了.
using Newtonsoft.Json; using Plates.Common; using Plates.Common.Base; using Plates.Common.Beans; using RuncomLib.File; using RuncomLib.Log; using RuncomLib.Text; using System; using System.Collections.Generic; using System.Linq; using System.Net.Sockets; using System.Security.Cryptography; using System.Text; using System.Threading; using System.Timers; namespace Plates.Client.Net { class Request { //定义,最好定义成静态的, 因为我们只需要一个就好 static SocketManager smanager = null; static UserInfoModel userInfo = null; //定义事件与委托 public delegate void ReceiveData(object message); public delegate void ServerClosed(); public static event ReceiveData OnReceiveData; public static event ServerClosed OnServerClosed; /// <summary> /// 心跳定时器 /// </summary> static System.Timers.Timer heartTimer = null; /// <summary> /// 心跳包 /// </summary> static ApiResponse heartRes = null; /// <summary> /// 判断是否已连接 /// </summary> public static bool Connected { get { return smanager != null && smanager.Connected; } } /// <summary> /// 已登录的用户信息 /// </summary> public static UserInfoModel UserInfo { get { return userInfo; } } #region 基本方法 /// <summary> /// 连接到服务器 /// </summary> /// <returns></returns> public static SocketError Connect() { if (Connected) return SocketError.Success; //我这里是读取配置, string ip = Config.ReadConfigString("socket", "server", ""); int port = Config.ReadConfigInt("socket", "port", 13909); if (string.IsNullOrWhiteSpace(ip) || port <= 1000) return SocketError.Fault; //创建连接对象, 连接到服务器 smanager = new SocketManager(ip, port); SocketError error = smanager.Connect(); if (error == SocketError.Success){ //连接成功后,就注册事件. 最好在成功后再注册. smanager.ServerDataHandler += OnReceivedServerData; smanager.ServerStopEvent += OnServerStopEvent; } return error; } /// <summary> /// 断开连接 /// </summary> public static void Disconnect() { try { smanager.Disconnect(); } catch (Exception) { } } /// <summary> /// 发送请求 /// </summary> /// <param name="request"></param> /// <returns></returns> public static bool Send(ApiResponse request) { return Send(JsonConvert.SerializeObject(request)); } /// <summary> /// 发送消息 /// </summary> /// <param name="message">消息实体</param> /// <returns>True.已发送; False.未发送</returns> public static bool Send(string message) { if (!Connected) return false; byte[] buff = Encoding.UTF8.GetBytes(message); //加密,根据自己的需要可以考虑把消息加密 //buff = AESEncrypt.Encrypt(buff, m_aesKey); smanager.Send(buff); return true; } /// <summary> /// 发送字节流 /// </summary> /// <param name="buff"></param> /// <returns></returns> static bool Send(byte[] buff) { if (!Connected) return false; smanager.Send(buff); return true; } /// <summary> /// 接收消息 /// </summary> /// <param name="buff"></param> private static void OnReceivedServerData(byte[] buff) { //To do something //你要处理的代码,可以实现把buff转化成你具体的对象, 再传给前台 if (OnReceiveData != null) OnReceiveData(buff); } /// <summary> /// 服务器已断开 /// </summary> private static void OnServerStopEvent() { if (OnServerClosed != null) OnServerClosed(); } #endregion #region 心跳包 //心跳包也是很重要的,看自己的需要了, 我只定义出来, 你自己找个地方去调用吧 /// <summary> /// 开启心跳 /// </summary> private static void StartHeartbeat() { if (heartTimer == null) { heartTimer = new System.Timers.Timer(); heartTimer.Elapsed += TimeElapsed; } heartTimer.AutoReset = true; //循环执行 heartTimer.Interval = 30 * 1000; //每30秒执行一次 heartTimer.Enabled = true; heartTimer.Start(); //初始化心跳包 heartRes = new ApiResponse((int)ApiCode.心跳); heartRes.data = new Dictionary<string, object>(); heartRes.data.Add("beat", Function.Base64Encode(userInfo.nickname + userInfo.userid + DateTime.Now.ToString("HH:mm:ss"))); } /// <summary> /// 定时执行 /// </summary> /// <param name="source"></param> /// <param name="e"></param> static void TimeElapsed(object source, ElapsedEventArgs e) { Request.Send(heartRes); } #endregion } }
好了, 就这些, 所有的请求都是异步进行的, 如果你想同步进行, 我也有实现过, 等有空了再贴上来.
如果你还没有弄懂服务器端, 请进入:
服务器实现参考:《C#如何利用SocketAsyncEventArgs实现高效能TCPSocket通信 (服务器实现)》
本贴为原创, 转载请注明出处: http://freshflower.iteye.com/blog/2285286
相关推荐
例子主要包括SocketAsyncEventArgs通讯封装、服务端实现日志查看、SCOKET列表、上传、下载、远程文件流、吞吐量协议,用于测试SocketAsyncEventArgs的性能和压力,最大连接数支持65535个长连接,最高命令交互速度...
我需要大量的设备同时向这个服务器软件发送信息,但是一般情况,在开发中不可能同时提供这么大量的设备,因此需要我们做一个模拟的软件,在网络上搜索了很久,发现都不太符合我个人的需求,那么在翻阅大量大神的文章...
SocketAsyncEventArgs是.NET Framework中用于实现高性能异步网络通信的类,主要应用于Socket编程。本文将深入探讨C#中使用SocketAsyncEventArgs构建服务端和客户端的相关知识点。 首先,SocketAsyncEventArgs是.NET...
本资源“C# Socket高并发_socket_socket并发_c#socket_C#_socket高并发_源码.zip”显然提供了使用C#语言进行Socket高并发编程的示例代码和实践。以下是对这个主题的详细解释: C# Socket编程: C#是微软开发的一种...
标题和描述中的知识点聚焦于如何使用C#的Socket类实现UDP协议通信,这涉及到了UDP协议的基本特性以及在C#中的具体实现方法。以下是对这一主题的深入解析: ### UDP协议简介 用户数据报协议(UDP)是互联网协议族中...
基于C# SocketAsyncEventArgs Class实现高效能多并发TCPSocket通信server端,以下代码示例实现了使用SocketAsyncEventArgs类的套接字服务器的连接逻辑。接受连接后,从客户端读取的所有数据都将发送回客户端。继续...
IOCPDemo_NET(C#高性能大容量SOCKET并发完成端口例子(有C#客户端)完整实例源码),主要包括SocketAsyncEventArgs通讯封装、服务端实现日志查看、SCOKET列表、上传、下载、远程文件流、吞吐量协议,用于测试...
本例程旨在演示如何利用C#来构建这样的高性能、大容量的并发SOCKET应用。 首先,IOCP是一种Windows操作系统提供的多线程I/O调度机制,它能够有效地处理大量并发I/O操作,通过将I/O操作与线程解耦,避免了线程频繁上...
在这个项目"**(源代码)C# Socket服务器和Tcp客户端通信**"中,你可以找到实际的C#代码实现,包括服务器端和客户端的完整功能。通过学习和运行这些代码,你可以更好地理解C# Socket通信的工作原理,以及如何在实际...
在本篇中,我们将深入探讨如何使用C#和SocketAsyncEventArgs接口实现一个基于I/O完成端口(IOCP)的高性能TCP服务器。SocketAsyncEventArgs是.NET Framework提供的一个高级API,它优化了网络通信的异步操作,特别...
本文将详细解析标题为“C# IOCP高性能 SOCKET并发完成端口例子(有C#客户端)完整实例源码”的技术知识点,以及如何利用C#进行IOCP(I/O完成端口)开发,实现广域网下的高效SOCKET通信。 首先,我们要理解什么是...
本篇将深入探讨“C#单个服务器对多个客户端的Socket通信源码程序”,并解析相关知识点。 Socket通信是基于TCP/IP协议的,它允许应用程序通过网络进行双向数据传输。在C#中,`System.Net.Sockets`命名空间提供了...
项目用到服务器SocketAsyncEventArgs高并发,尽管百度上千姿百态,还是自己总结写了一个可以接入项目的高性能~~还有用于模拟客户端发送的工具tcpudptest,,更改IP跟端口号就行~~纪念下写了三个多月的通信~~
综上所述,这个高性能TCP服务封装通过SocketAsyncEventArgs和IOCP实现了高效的异步通信,提供了可定制的服务生命周期管理,并且能够处理大量并发客户端。SocketServer、BufferManager和AsyncUserToken三个类协同工作...
SocketAsyncEventArgs 单机测试成功突破 6W,59999 还是 100%连接上去的 所以估计最高性能可能达到10W以上 值得说明的是 建议使用 SocketAsyncEventArgs 进行监听的 读取数据包. 因为 这2个地方的 ...
基于C#高性能大容量SOCKET并发完成端口例子有C#客户端完整实例源码,包括SocketAsyncEventArgs通讯封装、服务端实现日志查看、SCOKET列表、上传、下载、远程文件流、吞吐量协议,用于测试SocketAsyncEventArgs的性能...