- 浏览: 764596 次
- 性别:
- 来自: 南京
文章分类
- 全部博客 (663)
- Eclipse&MyEclipse (40)
- PHP (3)
- Java (72)
- CSS (3)
- MySQL (35)
- Oracle (68)
- Red Hat Linux (23)
- Tomcat (26)
- Oracle10gAS (1)
- Spring (28)
- MyBatis&iBatis (13)
- JS (47)
- JQuery (23)
- Editplus (2)
- 其他 (4)
- Html (15)
- SQL (5)
- Ant (2)
- Hadoop (2)
- Servlet (9)
- Windows (11)
- Flex (1)
- CentOS Linux (7)
- Microsoft SQL Server (2)
- DB2 (3)
- Mysql char 与 varchar 区别 (0)
- excel (5)
- jsp (8)
- FreeMarker (1)
- EasyUI (5)
- WebShpere MQ (1)
- Maven2 (6)
- 浏览器缓存 (2)
- visio (1)
- XML (2)
- 物联网 (1)
- Maven (3)
- JSTL (2)
- HTTP (1)
- Fourinone (1)
- IP知识 (1)
- MyBatis (1)
- 项目管理 (2)
- office2003+2007 (1)
- DOS (1)
- JProfiler (1)
- Thinpad T440p (1)
- ActiveMQ (10)
- MongoDB (5)
- Vert.x3 (1)
- Ngnix (3)
- Spark (2)
- BigData (1)
- 性能概念公式 (1)
- RocketMQ (3)
- IT名词术语 (1)
- Java编程工具 (1)
- RabbitMQ (2)
- MetaMQ (1)
- 架构 (6)
- KafkaMQ (7)
- Redis (4)
- OAuth (1)
- Gradle (1)
- CentOS (5)
- Microsoft_Toolkit (1)
- git (5)
- IntelliJ Idea (4)
- Nginx (3)
- docker (12)
- VMware (2)
- 算法 (1)
- JDBCPool (1)
- spring-cloud (7)
- netbean (1)
- 微信小程序 (2)
- CURL (2)
- Java生成二维码 (1)
- 区块链 (2)
- 机器学习 (1)
- SpringBoot (3)
- Android (9)
- 微服务架构 (1)
- Kubernetes (2)
- OpenProject (0)
- 测试 (1)
- https (1)
- 开源许可证 (1)
- ServiceMesh (2)
- NET (0)
- .NET (1)
- TEST (1)
- iOS (2)
- thymeleaf (4)
- lombok (1)
- 浏览器设置 (1)
- 富文本编辑器 (1)
- 搜索引擎 (1)
- IT常识 (1)
- UML (0)
- Axure (1)
- appstore无法联网 (0)
- apk无法安装 (1)
- SQLServer (2)
- 卸载弹窗软件 (1)
- jenkins (1)
- TortoiseGit (1)
- eureka (1)
- ajax (1)
- spyder (0)
最新评论
对于现在流行的深度学习,保持学习精神是必要的——程序员尤其是架构师永远都要对核心技术和关键算法保持关注和敏感,必要时要动手写一写掌握下来,先不用关心什么时候用到——用不用是政治问题,会不会写是技术问题,就像军人不关心打不打的问题,而要关心如何打赢的问题。
程序员如何学习机器学习
对程序员来说,机器学习是有一定门槛的(这个门槛也是其核心竞争力),相信很多人在学习机器学习时都会为满是数学公式的英文论文而头疼,甚至可能知难而退。但实际上机器学习算法落地程序并不难写,下面是70行代码实现的反向多层(BP)神经网络算法,也就是深度学习。其实不光是神经网络,逻辑回归、决策树C45/ID3、随机森林、贝叶斯、协同过滤、图计算、Kmeans、PageRank等大部分机器学习算法都能在100行单机程序内实现(以后考虑分享出来)。
机器学习的真正难度在于它为什么要这么计算,它背后的数学原理是什么,怎么推导得来的公式,网上大部分的资料都在介绍这部分理论知识,却很少告诉你该算法的计算过程和程序落地是怎么样的,对于程序员来说,你需要做的仅是工程化应用,而不需要证明出一项新的数学计算方法。实际大部分机器学习工程师都是利用别人写好的开源包或者工具软件,输入数据和调整计算系数来训练结果,甚至很少自己实现算法过程。但是掌握每个算法的计算过程仍然非常重要,这样你才能理解该算法让数据产生了什么样的变化,理解算法的目的是为了达到什么样的效果。
本文重点探讨反向神经网络的单机实现,关于神经网络的多机并行化,Fourinone提供非常灵活完善的并行计算框架,我们只需要理解透单机程序实现,就能构思和设计出分布式并行化方案,如果不理解算法计算过程,一切思路将无法展开。另外,还有卷积神经网络,主要是一种降维思想,用于图像处理,不在本文讨论范围。
延伸阅读:
机器学习开发者的现代化路径:不需要从统计学微积分开始
开发者成功使用机器学习的十大诀窍
机器学习温和指南
神经网络的计算过程
神经网络结构如下图所示,最左边的是输入层,最右边的是输出层,中间是多个隐含层,隐含层和输出层的每个神经节点,都是由上一层节点乘以其权重累加得到,标上“+1”的圆圈为截距项b,对输入层外每个节点:Y=w0*x0+w1*x1+…+wn*xn+b,由此我们可以知道神经网络相当于一个多层逻辑回归的结构。
(图片来自UFLDL Tutorial)
算法计算过程:输入层开始,从左往右计算,逐层往前直到输出层产生结果。如果结果值和目标值有差距,再从右往左算,逐层向后计算每个节点的误差,并且调整每个节点的所有权重,反向到达输入层后,又重新向前计算,重复迭代以上步骤,直到所有权重参数收敛到一个合理值。由于计算机程序求解方程参数和数学求法不一样,一般是先随机选取参数,然后不断调整参数减少误差直到逼近正确值,所以大部分的机器学习都是在不断迭代训练,下面我们从程序上详细看看该过程实现就清楚了。
神经网络的算法程序实现
神经网络的算法程序实现分为初始化、向前计算结果,反向修改权重三个过程。
1. 初始化过程
由于是n层神经网络,我们用二维数组layer记录节点值,第一维为层数,第二维为该层节点位置,数组的值为节点值;同样,节点误差值layerErr也是相似方式记录。用三维数组layer_weight记录各节点权重,第一维为层数,第二维为该层节点位置,第三维为下层节点位置,数组的值为某节点到达下层某节点的权重值,初始值为0-1之间的随机数。为了优化收敛速度,这里采用动量法权值调整,需要记录上一次权值调整量,用三维数组layer_weight_delta来记录,截距项处理:程序里将截距的值设置为1,这样只需要计算它的权重就可以了,
2. 向前计算结果
采用S函数1/(1+Math.exp(-z))将每个节点的值统一到0-1之间,再逐层向前计算直到输出层,对于输出层,实际上是不需要再用S函数的,我们这里将输出结果视为0到1之间的概率值,所以也采用了S函数,这样也有利于程序实现的统一性。
3. 反向修改权重
神经网络如何计算误差,一般采用平方型误差函数E,如下:
也就是将多个输出项和对应目标值的误差的平方累加起来,再除以2。实际上逻辑回归的误差函数也是这个,至于为什么要用这个函数来计算误差,它从数学上的合理性是什么,怎么得来的,这个我建议程序员们不想当数学家的话,先不去深究了,现在我们要做的是如何把这个函数E误差取它的最小值,需要对其进行求导,如果有些求导数学基础的话,倒可以尝试去推导下如何从函数E对权重求导得到下面这个公式的:
不会推导也没有关系,我们只需要运用结果公式就可以了,在我们的程序里用layerErr记录了E对权重求导后的最小化误差,再根据最小化误差去调整权重。
注意这里采用动量法调整,将上一次调整的经验考虑进来,避免陷入局部最小值,下面的k代表迭代次数,mobp为动量项,rate为学习步长:
Δw(k+1) = mobp*Δw(k)+rate*Err*Layer
也有很多使用下面的公式,效果上的差别不是太大:
Δw(k+1) = mobp*Δw(k)+(1-mobp)rate*Err*Layer
为了提升性能,注意程序实现是在一个while里面同时计算误差和调整权重,先将位置定位到倒数第二层(也就是最后一层隐含层)上,然后逐层反向调整,根据L+1层算好的误差来调整L层的权重,同时计算好L层的误差,用于下一次循环到L-1层时计算权重,以此循环下去直到倒数第一层(输入层)结束。
小结
在整个计算过程中,节点的值是每次计算都在变化的,不需要保存,而权重参数和误差参数是需要保存的,需要为下一次迭代提供支持,因此,如果我们构思一个分布式的多机并行计算方案,就能理解其他框架中为什么会有一个Parameter Server的概念。
多层神经网络完整程序实现
下面的实现程序BpDeep.java可以直接拿去使用,也很容易修改为C、C#、Python等其他任何语言实现,因为都是使用的基本语句,没有用到其他Java库(除了Random函数)。以下为原创程序,转载引用时请注明作者和出处。
Java代码
import java.util.Random;
public class BpDeep{
public double[][] layer;//神经网络各层节点
public double[][] layerErr;//神经网络各节点误差
public double[][][] layer_weight;//各层节点权重
public double[][][] layer_weight_delta;//各层节点权重动量
public double mobp;//动量系数
public double rate;//学习系数
public BpDeep(int[] layernum, double rate, double mobp){
this.mobp = mobp;
this.rate = rate;
layer = new double[layernum.length][];
layerErr = new double[layernum.length][];
layer_weight = new double[layernum.length][][];
layer_weight_delta = new double[layernum.length][][];
Random random = new Random();
for(int l=0;l<layernum.length;l++){
layer[l]=new double[layernum[l]];
layerErr[l]=new double[layernum[l]];
if(l+1<layernum.length){
layer_weight[l]=new double[layernum[l]+1][layernum[l+1]];
layer_weight_delta[l]=new double[layernum[l]+1][layernum[l+1]];
for(int j=0;j<layernum[l]+1;j++)
for(int i=0;i<layernum[l+1];i++)
layer_weight[l][j][i]=random.nextDouble();//随机初始化权重
}
}
}
//逐层向前计算输出
public double[] computeOut(double[] in){
for(int l=1;l<layer.length;l++){
for(int j=0;j<layer[l].length;j++){
double z=layer_weight[l-1][layer[l-1].length][j];
for(int i=0;i<layer[l-1].length;i++){
layer[l-1][i]=l==1?in[i]:layer[l-1][i];
z+=layer_weight[l-1][i][j]*layer[l-1][i];
}
layer[l][j]=1/(1+Math.exp(-z));
}
}
return layer[layer.length-1];
}
//逐层反向计算误差并修改权重
public void updateWeight(double[] tar){
int l=layer.length-1;
for(int j=0;j<layerErr[l].length;j++)
layerErr[l][j]=layer[l][j]*(1-layer[l][j])*(tar[j]-layer[l][j]);
while(l-->0){
for(int j=0;j<layerErr[l].length;j++){
double z = 0.0;
for(int i=0;i<layerErr[l+1].length;i++){
z=z+l>0?layerErr[l+1][i]*layer_weight[l][j][i]:0;
layer_weight_delta[l][j][i]= mobp*layer_weight_delta[l][j][i]+rate*layerErr[l+1][i]*layer[l][j];//隐含层动量调整
layer_weight[l][j][i]+=layer_weight_delta[l][j][i];//隐含层权重调整
if(j==layerErr[l].length-1){
layer_weight_delta[l][j+1][i]= mobp*layer_weight_delta[l][j+1][i]+rate*layerErr[l+1][i];//截距动量调整
layer_weight[l][j+1][i]+=layer_weight_delta[l][j+1][i];//截距权重调整
}
}
layerErr[l][j]=z*layer[l][j]*(1-layer[l][j]);//记录误差
}
}
}
public void train(double[] in, double[] tar){
double[] out = computeOut(in);
updateWeight(tar);
}
}
一个运用神经网络的例子
最后我们找个简单例子来看看神经网络神奇的效果。为了方便观察数据分布,我们选用一个二维坐标的数据,下面共有4个数据,方块代表数据的类型为1,三角代表数据的类型为0,可以看到属于方块类型的数据有(1,2)和(2,1),属于三角类型的数据有(1,1),(2,2),现在问题是需要在平面上将4个数据分成1和0两类,并以此来预测新的数据的类型。
[点击查看原始大小图片]
我们可以运用逻辑回归算法来解决上面的分类问题,但是逻辑回归得到一个线性的直线做为分界线,可以看到上面的红线无论怎么摆放,总是有一个样本被错误地划分到不同类型中,所以对于上面的数据,仅仅一条直线不能很正确地划分他们的分类,如果我们运用神经网络算法,可以得到下图的分类效果,相当于多条直线求并集来划分空间,这样准确性更高。
[点击查看原始大小图片]
下面是这个测试程序BpDeepTest.java的源码:
Java代码
import java.util.Arrays;
public class BpDeepTest{
public static void main(String[] args){
//初始化神经网络的基本配置
//第一个参数是一个整型数组,表示神经网络的层数和每层节点数,比如{3,10,10,10,10,2}表示输入层是3个节点,输出层是2个节点,中间有4层隐含层,每层10个节点
//第二个参数是学习步长,第三个参数是动量系数
BpDeep bp = new BpDeep(new int[]{2,10,2}, 0.15, 0.8);
//设置样本数据,对应上面的4个二维坐标数据
double[][] data = new double[][]{{1,2},{2,2},{1,1},{2,1}};
//设置目标数据,对应4个坐标数据的分类
double[][] target = new double[][]{{1,0},{0,1},{0,1},{1,0}};
//迭代训练5000次
for(int n=0;n<5000;n++)
for(int i=0;i<data.length;i++)
bp.train(data[i], target[i]);
//根据训练结果来检验样本数据
for(int j=0;j<data.length;j++){
double[] result = bp.computeOut(data[j]);
System.out.println(Arrays.toString(data[j])+":"+Arrays.toString(result));
}
//根据训练结果来预测一条新数据的分类
double[] x = new double[]{3,1};
double[] result = bp.computeOut(x);
System.out.println(Arrays.toString(x)+":"+Arrays.toString(result));
}
}
小结
以上测试程序显示神经网络有很神奇的分类效果,实际上神经网络有一定优势,但也不是接近人脑的万能算法,很多时候它可能会让我们失望,还需要结合各种场景的数据大量运用去观察其效果。我们可以把1层隐含层改成n层,并调整每层节点数、迭代次数、学习步长和动量系数,以获得一个最优化的结果。但是很多时候n层隐含层的效果并不比1层有明显提升,反而计算更复杂耗时,我们对神经网络的认识还需要多实践多体会。
作者简介:彭渊,在Java技术领域从业十多年,曾撰写多款开源软件,历任淘宝高级专家和华为中间件首席架构师。开源代表作有Fourinone(四不像)分布式核心技术框架、CoolHash并行数据库引擎等,曾出版书籍《大规模分布式系统架构与设计实战》。
责编:周建丁(zhoujd@csdn.net)
程序员如何学习机器学习
对程序员来说,机器学习是有一定门槛的(这个门槛也是其核心竞争力),相信很多人在学习机器学习时都会为满是数学公式的英文论文而头疼,甚至可能知难而退。但实际上机器学习算法落地程序并不难写,下面是70行代码实现的反向多层(BP)神经网络算法,也就是深度学习。其实不光是神经网络,逻辑回归、决策树C45/ID3、随机森林、贝叶斯、协同过滤、图计算、Kmeans、PageRank等大部分机器学习算法都能在100行单机程序内实现(以后考虑分享出来)。
机器学习的真正难度在于它为什么要这么计算,它背后的数学原理是什么,怎么推导得来的公式,网上大部分的资料都在介绍这部分理论知识,却很少告诉你该算法的计算过程和程序落地是怎么样的,对于程序员来说,你需要做的仅是工程化应用,而不需要证明出一项新的数学计算方法。实际大部分机器学习工程师都是利用别人写好的开源包或者工具软件,输入数据和调整计算系数来训练结果,甚至很少自己实现算法过程。但是掌握每个算法的计算过程仍然非常重要,这样你才能理解该算法让数据产生了什么样的变化,理解算法的目的是为了达到什么样的效果。
本文重点探讨反向神经网络的单机实现,关于神经网络的多机并行化,Fourinone提供非常灵活完善的并行计算框架,我们只需要理解透单机程序实现,就能构思和设计出分布式并行化方案,如果不理解算法计算过程,一切思路将无法展开。另外,还有卷积神经网络,主要是一种降维思想,用于图像处理,不在本文讨论范围。
延伸阅读:
机器学习开发者的现代化路径:不需要从统计学微积分开始
开发者成功使用机器学习的十大诀窍
机器学习温和指南
神经网络的计算过程
神经网络结构如下图所示,最左边的是输入层,最右边的是输出层,中间是多个隐含层,隐含层和输出层的每个神经节点,都是由上一层节点乘以其权重累加得到,标上“+1”的圆圈为截距项b,对输入层外每个节点:Y=w0*x0+w1*x1+…+wn*xn+b,由此我们可以知道神经网络相当于一个多层逻辑回归的结构。
(图片来自UFLDL Tutorial)
算法计算过程:输入层开始,从左往右计算,逐层往前直到输出层产生结果。如果结果值和目标值有差距,再从右往左算,逐层向后计算每个节点的误差,并且调整每个节点的所有权重,反向到达输入层后,又重新向前计算,重复迭代以上步骤,直到所有权重参数收敛到一个合理值。由于计算机程序求解方程参数和数学求法不一样,一般是先随机选取参数,然后不断调整参数减少误差直到逼近正确值,所以大部分的机器学习都是在不断迭代训练,下面我们从程序上详细看看该过程实现就清楚了。
神经网络的算法程序实现
神经网络的算法程序实现分为初始化、向前计算结果,反向修改权重三个过程。
1. 初始化过程
由于是n层神经网络,我们用二维数组layer记录节点值,第一维为层数,第二维为该层节点位置,数组的值为节点值;同样,节点误差值layerErr也是相似方式记录。用三维数组layer_weight记录各节点权重,第一维为层数,第二维为该层节点位置,第三维为下层节点位置,数组的值为某节点到达下层某节点的权重值,初始值为0-1之间的随机数。为了优化收敛速度,这里采用动量法权值调整,需要记录上一次权值调整量,用三维数组layer_weight_delta来记录,截距项处理:程序里将截距的值设置为1,这样只需要计算它的权重就可以了,
2. 向前计算结果
采用S函数1/(1+Math.exp(-z))将每个节点的值统一到0-1之间,再逐层向前计算直到输出层,对于输出层,实际上是不需要再用S函数的,我们这里将输出结果视为0到1之间的概率值,所以也采用了S函数,这样也有利于程序实现的统一性。
3. 反向修改权重
神经网络如何计算误差,一般采用平方型误差函数E,如下:
也就是将多个输出项和对应目标值的误差的平方累加起来,再除以2。实际上逻辑回归的误差函数也是这个,至于为什么要用这个函数来计算误差,它从数学上的合理性是什么,怎么得来的,这个我建议程序员们不想当数学家的话,先不去深究了,现在我们要做的是如何把这个函数E误差取它的最小值,需要对其进行求导,如果有些求导数学基础的话,倒可以尝试去推导下如何从函数E对权重求导得到下面这个公式的:
不会推导也没有关系,我们只需要运用结果公式就可以了,在我们的程序里用layerErr记录了E对权重求导后的最小化误差,再根据最小化误差去调整权重。
注意这里采用动量法调整,将上一次调整的经验考虑进来,避免陷入局部最小值,下面的k代表迭代次数,mobp为动量项,rate为学习步长:
Δw(k+1) = mobp*Δw(k)+rate*Err*Layer
也有很多使用下面的公式,效果上的差别不是太大:
Δw(k+1) = mobp*Δw(k)+(1-mobp)rate*Err*Layer
为了提升性能,注意程序实现是在一个while里面同时计算误差和调整权重,先将位置定位到倒数第二层(也就是最后一层隐含层)上,然后逐层反向调整,根据L+1层算好的误差来调整L层的权重,同时计算好L层的误差,用于下一次循环到L-1层时计算权重,以此循环下去直到倒数第一层(输入层)结束。
小结
在整个计算过程中,节点的值是每次计算都在变化的,不需要保存,而权重参数和误差参数是需要保存的,需要为下一次迭代提供支持,因此,如果我们构思一个分布式的多机并行计算方案,就能理解其他框架中为什么会有一个Parameter Server的概念。
多层神经网络完整程序实现
下面的实现程序BpDeep.java可以直接拿去使用,也很容易修改为C、C#、Python等其他任何语言实现,因为都是使用的基本语句,没有用到其他Java库(除了Random函数)。以下为原创程序,转载引用时请注明作者和出处。
Java代码
import java.util.Random;
public class BpDeep{
public double[][] layer;//神经网络各层节点
public double[][] layerErr;//神经网络各节点误差
public double[][][] layer_weight;//各层节点权重
public double[][][] layer_weight_delta;//各层节点权重动量
public double mobp;//动量系数
public double rate;//学习系数
public BpDeep(int[] layernum, double rate, double mobp){
this.mobp = mobp;
this.rate = rate;
layer = new double[layernum.length][];
layerErr = new double[layernum.length][];
layer_weight = new double[layernum.length][][];
layer_weight_delta = new double[layernum.length][][];
Random random = new Random();
for(int l=0;l<layernum.length;l++){
layer[l]=new double[layernum[l]];
layerErr[l]=new double[layernum[l]];
if(l+1<layernum.length){
layer_weight[l]=new double[layernum[l]+1][layernum[l+1]];
layer_weight_delta[l]=new double[layernum[l]+1][layernum[l+1]];
for(int j=0;j<layernum[l]+1;j++)
for(int i=0;i<layernum[l+1];i++)
layer_weight[l][j][i]=random.nextDouble();//随机初始化权重
}
}
}
//逐层向前计算输出
public double[] computeOut(double[] in){
for(int l=1;l<layer.length;l++){
for(int j=0;j<layer[l].length;j++){
double z=layer_weight[l-1][layer[l-1].length][j];
for(int i=0;i<layer[l-1].length;i++){
layer[l-1][i]=l==1?in[i]:layer[l-1][i];
z+=layer_weight[l-1][i][j]*layer[l-1][i];
}
layer[l][j]=1/(1+Math.exp(-z));
}
}
return layer[layer.length-1];
}
//逐层反向计算误差并修改权重
public void updateWeight(double[] tar){
int l=layer.length-1;
for(int j=0;j<layerErr[l].length;j++)
layerErr[l][j]=layer[l][j]*(1-layer[l][j])*(tar[j]-layer[l][j]);
while(l-->0){
for(int j=0;j<layerErr[l].length;j++){
double z = 0.0;
for(int i=0;i<layerErr[l+1].length;i++){
z=z+l>0?layerErr[l+1][i]*layer_weight[l][j][i]:0;
layer_weight_delta[l][j][i]= mobp*layer_weight_delta[l][j][i]+rate*layerErr[l+1][i]*layer[l][j];//隐含层动量调整
layer_weight[l][j][i]+=layer_weight_delta[l][j][i];//隐含层权重调整
if(j==layerErr[l].length-1){
layer_weight_delta[l][j+1][i]= mobp*layer_weight_delta[l][j+1][i]+rate*layerErr[l+1][i];//截距动量调整
layer_weight[l][j+1][i]+=layer_weight_delta[l][j+1][i];//截距权重调整
}
}
layerErr[l][j]=z*layer[l][j]*(1-layer[l][j]);//记录误差
}
}
}
public void train(double[] in, double[] tar){
double[] out = computeOut(in);
updateWeight(tar);
}
}
一个运用神经网络的例子
最后我们找个简单例子来看看神经网络神奇的效果。为了方便观察数据分布,我们选用一个二维坐标的数据,下面共有4个数据,方块代表数据的类型为1,三角代表数据的类型为0,可以看到属于方块类型的数据有(1,2)和(2,1),属于三角类型的数据有(1,1),(2,2),现在问题是需要在平面上将4个数据分成1和0两类,并以此来预测新的数据的类型。
[点击查看原始大小图片]
我们可以运用逻辑回归算法来解决上面的分类问题,但是逻辑回归得到一个线性的直线做为分界线,可以看到上面的红线无论怎么摆放,总是有一个样本被错误地划分到不同类型中,所以对于上面的数据,仅仅一条直线不能很正确地划分他们的分类,如果我们运用神经网络算法,可以得到下图的分类效果,相当于多条直线求并集来划分空间,这样准确性更高。
[点击查看原始大小图片]
下面是这个测试程序BpDeepTest.java的源码:
Java代码
import java.util.Arrays;
public class BpDeepTest{
public static void main(String[] args){
//初始化神经网络的基本配置
//第一个参数是一个整型数组,表示神经网络的层数和每层节点数,比如{3,10,10,10,10,2}表示输入层是3个节点,输出层是2个节点,中间有4层隐含层,每层10个节点
//第二个参数是学习步长,第三个参数是动量系数
BpDeep bp = new BpDeep(new int[]{2,10,2}, 0.15, 0.8);
//设置样本数据,对应上面的4个二维坐标数据
double[][] data = new double[][]{{1,2},{2,2},{1,1},{2,1}};
//设置目标数据,对应4个坐标数据的分类
double[][] target = new double[][]{{1,0},{0,1},{0,1},{1,0}};
//迭代训练5000次
for(int n=0;n<5000;n++)
for(int i=0;i<data.length;i++)
bp.train(data[i], target[i]);
//根据训练结果来检验样本数据
for(int j=0;j<data.length;j++){
double[] result = bp.computeOut(data[j]);
System.out.println(Arrays.toString(data[j])+":"+Arrays.toString(result));
}
//根据训练结果来预测一条新数据的分类
double[] x = new double[]{3,1};
double[] result = bp.computeOut(x);
System.out.println(Arrays.toString(x)+":"+Arrays.toString(result));
}
}
小结
以上测试程序显示神经网络有很神奇的分类效果,实际上神经网络有一定优势,但也不是接近人脑的万能算法,很多时候它可能会让我们失望,还需要结合各种场景的数据大量运用去观察其效果。我们可以把1层隐含层改成n层,并调整每层节点数、迭代次数、学习步长和动量系数,以获得一个最优化的结果。但是很多时候n层隐含层的效果并不比1层有明显提升,反而计算更复杂耗时,我们对神经网络的认识还需要多实践多体会。
作者简介:彭渊,在Java技术领域从业十多年,曾撰写多款开源软件,历任淘宝高级专家和华为中间件首席架构师。开源代表作有Fourinone(四不像)分布式核心技术框架、CoolHash并行数据库引擎等,曾出版书籍《大规模分布式系统架构与设计实战》。
责编:周建丁(zhoujd@csdn.net)
发表评论
-
文本域显示行数算法
2021-03-10 22:46 284每行显示字符数: showCount 总共字符数:tot ... -
[初级容易犯错的地方]JAVA方法中的参数用final来修饰的效果(转)
2020-11-23 16:52 238今天顺便看到这个文章,转发一下,因是很多初级者容易犯错的地 ... -
Java批量解析微信dat文件,微信图片破解
2020-02-17 20:33 2093package com.chinada.dms.test.y ... -
Spring Framework 5.0 入门篇(转)
2019-04-25 10:00 01.为什么学习Spring? 随着对Java EE ... -
类中内部类中的方法访问外部类中变量的示例(转)
2018-10-06 21:23 458lass Day10_11 { public static ... -
java连接ssh到服务器执行命令(免密码)
2018-07-10 09:00 0今天在做不同服务器间,免密码执行curl 命令 Java ... -
于Aviator的规则引擎Demo(转)
2018-05-03 09:26 1835编写不易,转载请注明(http://shihlei.itey ... -
va网络爬虫经验分享(转)
2018-04-20 10:33 575最近三年很少写博客,虽然一直从事IT行业,但更多的是管理工作 ... -
高级Java开发人员最常访问的几个网站(转)
2018-04-19 14:30 310这是高级Java开发人员最常访问的几个网站。 这些网 ... -
趣味算法图解,文科生都看懂了(转)
2018-04-17 17:22 883编者按 IDEA 是由 Sándor ... -
Java Security:公钥私钥、数字签名、消息摘要是什么 (转)
2018-04-13 10:10 421https://www.cnblogs.com/f119436 ... -
一文了解十大 Java 开发者必备测试框架!(转)
2018-04-10 13:55 366想要提升自己的自动化测试技能吗?本文将介绍10个优秀的 Ja ... -
深入理解 Java 多线程核心知识:跳槽面试必备(转)
2018-04-02 13:43 329多线程相对于其他 Java 知识点来讲,有一定的学习门槛,并 ... -
11大Java开源中文分词器的使用方法和分词效果对比(转)
2018-03-19 15:37 560原文出处: 杨尚川 本文的目标有两个: 1、学会使用1 ... -
远程debug代码(转)
2018-03-16 16:45 1018参考:http://blog.csdn.net/su ... -
微服务架构初探(转)
2018-03-16 16:39 647什么是微服务 ... -
你真的理解了MVC, MVP, MVVM吗?(转)
2018-03-15 15:26 545前言: 准备写这篇文章的时候 , 我自认为对MVC已经有深刻 ... -
JAR(Spring Boot)应用的后台运行配置(转)
2018-03-09 07:04 1117酱油一篇,整理一下关于Spring Boot后台运行的一些配 ... -
一位阿里架构师在2018年给每个程序员的小建议(转)
2018-03-01 15:54 572一位阿里架构师在2018年给每个程序员的小建议 1 ... -
Java 9 新特性,看这里就明白了(转)
2018-02-28 14:54 5671、Java9 新特性之---目 ...
相关推荐
《神经网络算法与实现——基于Java语言 代码实例》是一本深入探讨神经网络编程的书籍,专注于使用Java语言实现各种神经网络模型。本书通过实际的代码示例,为读者提供了理解神经网络工作原理以及如何在Java环境下...
### BP神经网络算法的Java实现解析 #### 一、引言 BP(Back Propagation)神经网络是一种前馈型神经网络,它通过反向传播算法进行权重调整来优化网络性能。BP神经网络广泛应用于模式识别、分类、预测等多个领域。...
用java实现卷积神经网络,平台是eclipse,如何用eclipse导入可以参考http://blog.csdn.net/baidu_37107022/article/details/70209949,作者是http://www.cnblogs.com/fengfenggirl
3. 构建模型:使用深度神经网络,可能包括卷积神经网络(CNN)、循环神经网络(RNN)或长短时记忆网络(LSTM)等,来捕获音频序列的时序特征。 4. 训练与优化:通过大量的标注数据训练模型,选择合适的损失函数(如...
程序开发软件:Eclipse/Idea + WebStorm/VsCode + Pycharm 数据库:mysql 开发技术:Springboot + Vue + Python 这个是一个水质管理和预报系统,它是一个全栈Web应用程序,使用机器学习和深度神经网络算法来预测未来...
在本压缩包“神经网络算法.rar”中,我们可能找到了与神经网络算法实现相关的资料,特别是与Java编程语言相结合的应用。 神经网络通常由输入层、隐藏层和输出层组成。输入层接收原始数据,隐藏层进行信息处理,而...
在“深度学习java及其算法详解”这一资源中,我们探讨的是如何将Java编程语言与深度学习技术相结合,以及深入理解基础的计算机科学概念,特别是数据结构和算法。Java是一种广泛应用于企业级应用、移动开发(如...
在这个“神经网络算法与实现(基于java)示例代码.rar”压缩包中,包含的文件很可能是用于演示如何在Java环境下构建和应用神经网络的源代码。 Java是一种流行的编程语言,其跨平台特性使得开发人员可以在各种操作...
在本项目中,我们主要探讨的是如何使用Java语言来实现神经网络算法模型,这涉及到深度学习领域的基础理论以及编程实践。Java作为一种广泛使用的面向对象编程语言,其强大的跨平台能力和丰富的库支持使得它成为实现...
基于Springboot+Vue+Python深度神经网络学习算法水质管理预测系统+毕业设计+源码案例+课程设计.zip基于Springboot+Vue+Python深度神经网络学习算法水质管理预测系统+毕业设计+源码案例+课程设计.zip基于Springboot+...
在Java中实现BP神经网络,我们需要了解以下几个关键概念和技术: 1. **神经元模型**:神经元是神经网络的基本构建单元,它接收输入信号,通过加权求和并加上偏置后,通过激活函数转化为输出信号。在BP网络中,常用...
通过阅读和理解这些代码,我们可以深入学习BP神经网络的工作原理,以及如何用Java进行实际的实现。同时,这也是一个很好的实践机会,可以加深对机器学习和编程的理解。对于想要学习自然计算、神经网络或Java编程的人...
"code_resource_010"可能是包含神经网络算法实现的源代码文件,可能包括了上述各种神经网络结构的Java实现,以及相关的数据集、配置文件和文档。文档通常会介绍如何配置运行环境、解释代码结构、提供示例输入输出,...
Java编写的BP神经网络是一种基于反向传播算法的深度学习模型,主要用于解决非线性问题。BP,全称为Backpropagation,是人工神经网络中的一种训练方法,它通过不断调整权重来减小预测值与实际值之间的误差,从而提高...
这些文件可能用Python、Java或MATLAB等编程语言编写,包含了定义神经网络结构、初始化权重、前向传播、反向传播以及权重更新的函数。通过阅读和理解这些代码,我们可以深入学习如何从头构建一个简单的神经网络模型。...
最基础的是基于启发式的搜索算法,如Minimax算法或Alpha-Beta剪枝,更高级的可以是深度学习的神经网络模型。对于初学者,可以从简单的随机选择开始。 6. **事件处理**:Java Swing或JavaFX库可用于创建图形用户界面...
本项目“用JAVA实现的神经网络”专注于创建一个具有高度灵活性的神经网络框架,允许用户根据需求自由地添加输入、输出以及中间隐藏层的节点。 神经网络的基本结构是由多个层次组成的,包括输入层、隐藏层和输出层。...
深度学习是机器学习的一个分支,它模拟人脑神经网络的工作原理,通过多层非线性变换对数据进行建模。在搜索引擎开发中,深度学习可以用于文本理解、语义分析、用户意图识别等任务,提高搜索结果的相关性和准确性。 ...
在本项目实践中,我们将深入探讨如何使用Java实现一个简单的卷积神经网络(CNN)来识别手写数字。这个任务是基于著名的MNIST数据集,它包含了大量的手写数字图像,通常用于训练和测试机器学习模型,尤其是深度学习...