`

Hadoop MapReduce处理wordcount代码分析

 
阅读更多
package org.apache.hadoop.examples;

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {

  public static class TokenizerMapper

      extends Mapper<Object, Text, Text, IntWritable>{

      private final static IntWritable one = new IntWritable(1);

      private Text word = new Text();

 

      public void map(Object key, Text value, Context context)

        throws IOException, InterruptedException {

        StringTokenizer itr = new StringTokenizer(value.toString());

        while (itr.hasMoreTokens()) {

        word.set(itr.nextToken());

        context.write(word, one);

      }

    }

  }

  public static class IntSumReducer

      extends Reducer<Text,IntWritable,Text,IntWritable> {

      private IntWritable result = new IntWritable();

      public void reduce(Text key, Iterable<IntWritable> values,Context context)

           throws IOException, InterruptedException {

        int sum = 0;

        for (IntWritable val : values) {

           sum += val.get();

        }

      result.set(sum);

      context.write(key, result);

    }

  }

 

  public static void main(String[] args) throws Exception {

    Configuration conf = new Configuration();

    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();

    if (otherArgs.length != 2) {

      System.err.println("Usage: wordcount <in> <out>");

      System.exit(2);

    }

    Job job = new Job(conf, "word count");

    job.setJarByClass(WordCount.class);

    job.setMapperClass(TokenizerMapper.class);

    job.setCombinerClass(IntSumReducer.class);

    job.setReducerClass(IntSumReducer.class);

    job.setOutputKeyClass(Text.class);

    job.setOutputValueClass(IntWritable.class);

    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

    System.exit(job.waitForCompletion(true) ? 0 : 1);

}

}


1)Map过程
public static class TokenizerMapper

  extends Mapper<Object, Text, Text, IntWritable>{

  private final static IntWritable one = new IntWritable(1);

  private Text word = new Text();

  public void map(Object key, Text value, Context context)

    throws IOException, InterruptedException {

    StringTokenizer itr = new StringTokenizer(value.toString());

    while (itr.hasMoreTokens()) {

      word.set(itr.nextToken());

      context.write(word, one);

  }

}

Map过程需要继承org.apache.hadoop.mapreduce包中Mapper类,并重写其map方法。通过在map方法中添加两句把key值和value值输出到控制台的代码,可以发现map方法中value值存储的是文本文件中的一行(以回车符为行结束标记),而key值为该行的首字母相对于文本文件的首地址的偏移量。然后StringTokenizer类将每一行拆分成为一个个的单词,并将<word,1>作为map方法的结果输出,其余的工作都交有MapReduce框架处理。

2)Reduce过程
public static class IntSumReducer

  extends Reducer<Text,IntWritable,Text,IntWritable> {

  private IntWritable result = new IntWritable();

  public void reduce(Text key, Iterable<IntWritable> values,Context context)

     throws IOException, InterruptedException {

    int sum = 0;

    for (IntWritable val : values) {

      sum += val.get();

    }

    result.set(sum);

    context.write(key, result);

  }

}

Reduce过程需要继承org.apache.hadoop.mapreduce包中Reducer类,并重写其reduce方法。Map过程输出<key,values>中key为单个单词,而values是对应单词的计数值所组成的列表,Map的输出就是Reduce的输入,所以reduce方法只要遍历values并求和,即可得到某个单词的总次数。

3)执行MapReduce任务
public static void main(String[] args) throws Exception {

  Configuration conf = new Configuration();

  String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();

  if (otherArgs.length != 2) {

    System.err.println("Usage: wordcount <in> <out>");

    System.exit(2);

  }

  Job job = new Job(conf, "word count");

  job.setJarByClass(WordCount.class);

  job.setMapperClass(TokenizerMapper.class);

  job.setCombinerClass(IntSumReducer.class);

  job.setReducerClass(IntSumReducer.class);

  job.setOutputKeyClass(Text.class);

  job.setOutputValueClass(IntWritable.class);

  FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

  FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

  System.exit(job.waitForCompletion(true) ? 0 : 1);

}


在MapReduce中,由Job对象负责管理和运行一个计算任务,并通过Job的一些方法对任务的参数进行相关的设置。此处设置了使用TokenizerMapper完成Map过程中的处理和使用IntSumReducer完成Combine和Reduce过程中的处理。还设置了Map过程和Reduce过程的输出类型:key的类型为Text,value的类型为IntWritable。任务的输出和输入路径则由命令行参数指定,并由FileInputFormat和FileOutputFormat分别设定。完成相应任务的参数设定后,即可调用job.waitForCompletion()方法执行任务。

转自:http://www.cnblogs.com/xia520pi/archive/2012/05/16/2504205.html
分享到:
评论
发表评论

文章已被作者锁定,不允许评论。

相关推荐

    Hadoop mapreduce实现wordcount

    【标题】Hadoop MapReduce 实现 WordCount ...通过理解和实践 Hadoop MapReduce 的 WordCount 示例,开发者可以快速掌握 MapReduce 的基本工作原理,为进一步学习和应用大数据处理技术打下坚实基础。

    hadoop 框架下 mapreduce源码例子 wordcount

    在这个例子中,我们将深入理解Hadoop MapReduce的工作原理以及如何在Eclipse环境下实现WordCount源码。 1. **Hadoop MapReduce概述**: Hadoop MapReduce是由两个主要部分组成的:Map阶段和Reduce阶段。Map阶段将...

    hadoop mapreduce wordcount

    &lt;groupId&gt;com.hadoop.mapreduce&lt;/groupId&gt; &lt;artifactId&gt;wordcount &lt;version&gt;0.0.1-SNAPSHOT &lt;packaging&gt;jar &lt;name&gt;wordcount &lt;url&gt;http://maven.apache.org&lt;/url&gt; &lt;project.build.sourceEncoding&gt;UTF-8 ...

    Java操作Hadoop Mapreduce基本实践源码

    本文将深入探讨如何使用Java编程语言来操作Hadoop MapReduce进行基本实践,通过源码分析来理解其核心工作原理和编程模型。 MapReduce的核心思想是将大规模数据集分解成小块,然后在分布式集群上并行处理这些小块,...

    hadoop mapreduce 例子项目,运行了单机wordcount

    Hadoop MapReduce是一种分布式计算框架,它允许在大型数据集上进行并行处理。这个例子项目是关于在单机环境中运行WordCount程序的,这是一个经典的MapReduce示例,用于统计文本文件中每个单词出现的次数。 首先,让...

    mapreduce的wordCount案例

    在这个案例中,我们将深入理解MapReduce的工作原理,并通过WordCount的例子来解析其实现过程。 首先,MapReduce由两个主要阶段组成:Map阶段和Reduce阶段。Map阶段负责将输入数据分割成独立的键值对(key-value ...

    Hadoop之MapReduce编程实例完整源码

    一个自己写的Hadoop MapReduce实例源码,网上看到不少网友在学习MapReduce编程,但是除了wordcount范例外实例比较少,故上传自己的一个。包含完整实例源码,编译配置文件,测试数据,可执行jar文件,执行脚本及操作...

    Ubuntu安装Hadoop实现MapReduce里的WordCount

    ### Ubuntu安装Hadoop实现MapReduce里的WordCount #### 核心知识点概述 1. **Ubuntu环境下的基础配置**:包括VMware Tools的安装、JDK的安装与配置。 2. **Hadoop的安装与配置**:包括下载与解压、环境变量配置、...

    大数据实验报告Hadoop编程实现wordcount单词统计程序附源码.doc

    大数据实验报告 Hadoop 编程实现 wordcount 单词统计程序附源码 本实验报告旨在介绍使用 Hadoop 编程实现 wordcount 单词统计程序的步骤和代码实现。实验的目的在于熟悉 Hadoop 虚拟机的安装与环境的配置,初步理解...

    hadoop中 MapReduce学习代码WordCount

    【Hadoop MapReduce 学习代码 - WordCount】 在大数据处理领域,Hadoop MapReduce 是一个重要的工具,它提供了一种分布式计算模型,用于处理和生成大规模数据集。本篇文章将详细讲解如何通过一个简单的 WordCount ...

    hadoop mapreduce编程实战

    * WordCount 程序编写及代码分析 * 新建一个 MapReduce 工程 * 修改源程序 * 上传处理数据 * 运行以及结果分析 * map 程序分析 * reduce 程序分析 * WordCount 主程序分析 MapReduce 编程模型 MapReduce 编程模型...

    hadoop mapreduce helloworld 能调试

    在大数据处理领域,Hadoop MapReduce 是一个至关重要的框架,它允许开发者编写分布式应用程序来处理海量数据。"Hadoop MapReduce HelloWorld 能调试" 的主题意味着我们将深入理解如何设置、运行以及调试 MapReduce ...

    hadoop1.2.1修改WordCount并编译

    Hadoop 是一种基于分布式处理的大数据处理框架,其中 WordCount 程序是一个经典的示例程序,用于统计文本文件中的词频信息。在 Hadoop 1.2.1 版本下,我们可以修改 WordCount 程序以便在控制台输出结果。 在 ...

    Hadoop MapReduce.pdf

    ### Hadoop MapReduce知识点概述 #### 一、Hadoop MapReduce简介 Hadoop MapReduce是一种分布式数据处理模型,... - 编辑器中的`WordCount.java`代码可以从Hadoop官方文档获取(地址:[Hadoop MapReduce Tutorial]...

    Hadoop集群-WordCount运行详解.pdf

    本篇文档深入浅出地介绍了Hadoop集群的WordCount运行详解,从MapReduce理论到WordCount程序的运行,再到源码分析,内容丰富且详细,对于想要入门和深入了解Hadoop分布式计算和MapReduce模型的读者来说,是一份宝贵的...

    WordCount2_hadoopwordcount_

    在Hadoop生态系统中,`WordCount`程序是...`WordCount2.java`文件包含了该程序的源代码,展示了如何利用Hadoop的MapReduce模型进行分布式计算。理解并分析这个程序的源代码,有助于深入学习Hadoop和分布式计算的基础。

    使用hadoop实现WordCount实验报告.docx

    实验报告的目的是详细记录使用Hadoop在Windows环境下实现WordCount应用的过程,包括环境配置、WordCount程序的实现以及实验结果分析。本实验旨在理解Hadoop分布式计算的基本原理,并熟悉Hadoop集群的搭建与管理。 #...

    MapReduce之wordcount范例代码

    在Hadoop初学者接触MapReduce时,WordCount是一个理想的起点,因为它能直观地展示数据处理的分布式过程。通过编写和运行WordCount程序,开发者可以理解如何将计算任务分解并分布到集群上,以及如何在不同节点间交换...

    mapred.zip_hadoop_hadoop mapreduce_mapReduce

    在Hadoop生态系统中,MapReduce是一种分布式计算框架,它允许用户编写并运行处理大量数据的程序。这个"mapred.zip"文件显然包含了与Hadoop MapReduce相关的测试样例、文档和源码,这对于理解MapReduce的工作原理以及...

Global site tag (gtag.js) - Google Analytics