- 浏览: 601817 次
- 性别:
- 来自: 厦门
文章分类
- 全部博客 (669)
- oracle (36)
- java (98)
- spring (48)
- UML (2)
- hibernate (10)
- tomcat (7)
- 高性能 (11)
- mysql (25)
- sql (19)
- web (42)
- 数据库设计 (4)
- Nio (6)
- Netty (8)
- Excel (3)
- File (4)
- AOP (1)
- Jetty (1)
- Log4J (4)
- 链表 (1)
- Spring Junit4 (3)
- Autowired Resource (0)
- Jackson (1)
- Javascript (58)
- Spring Cache (2)
- Spring - CXF (2)
- Spring Inject (2)
- 汉字拼音 (3)
- 代理模式 (3)
- Spring事务 (4)
- ActiveMQ (6)
- XML (3)
- Cglib (2)
- Activiti (15)
- 附件问题 (1)
- javaMail (1)
- Thread (19)
- 算法 (6)
- 正则表达式 (3)
- 国际化 (2)
- Json (3)
- EJB (3)
- Struts2 (1)
- Maven (7)
- Mybatis (7)
- Redis (8)
- DWR (1)
- Lucene (2)
- Linux (73)
- 杂谈 (2)
- CSS (13)
- Linux服务篇 (3)
- Kettle (9)
- android (81)
- protocol (2)
- EasyUI (6)
- nginx (2)
- zookeeper (6)
- Hadoop (41)
- cache (7)
- shiro (3)
- HBase (12)
- Hive (8)
- Spark (15)
- Scala (16)
- YARN (3)
- Kafka (5)
- Sqoop (2)
- Pig (3)
- Vue (6)
- sprint boot (19)
- dubbo (2)
- mongodb (2)
最新评论
一、简介
history
started by chad walters and jim
2006.11 G release paper on BigTable
2007.2 inital HBase prototype created as Hadoop contrib
2007.10 First useable Hbase
2008.1 Hadoop become Apache top-level project and Hbase becomes subproject
2008.10 Hbase 0.18,0.19 released
hbase是bigtable的开源山寨版本。是建立的hdfs之上,提供高可靠性、高性能、列存储、可伸缩、实时读写的数据库系统。
它介于nosql和RDBMS之间,仅能通过主键(row key)和主键的range来检索数据,仅支持单行事务(可通过hive支持来实现多表join等复杂操作)。主要用来存储非结构化和半结构化的松散数据。
与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。
HBase中的表一般有这样的特点:
1 大:一个表可以有上亿行,上百万列
2 面向列:面向列(族)的存储和权限控制,列(族)独立检索。
3 稀疏:对于为空(null)的列,并不占用存储空间,因此,表可以设计的非常稀疏。
二、逻辑视图
Row Key
与nosql数据库们一样,row key是用来检索记录的主键。访问hbase table中的行,只有三种方式:
1 通过单个row key访问
2 通过row key的range
3 全表扫描
Row key行键 (Row key)可以是任意字符串(最大长度是 64KB,实际应用中长度一般为 10-100bytes),在hbase内部,row key保存为字节数组。
存储时,数据按照Row key的字典序(byte order)排序存储。设计key时,要充分排序存储这个特性,将经常一起读取的行存储放到一起。(位置相关性)
注意:
字典序对int排序的结果是1,10,100,11,12,13,14,15,16,17,18,19,2,20,21,…,9,91,92,93,94,95,96,97,98,99。要保持整形的自然序,行键必须用0作左填充。
行的一次读写是原子操作 (不论一次读写多少列)。这个设计决策能够使用户很容易的理解程序在对同一个行进行并发更新操作时的行为。
列族
hbase表中的每个列,都归属与某个列族。列族是表的schema的一部分(而列不是),必须在使用表之前定义。列名都以列族作为前缀。例如courses:history,courses:math都属于courses这个列族。
访问控制、磁盘和内存的使用统计都是在列族层面进行的。实际应用中,列族上的控制权限能帮助我们管理不同类型的应用:我们允许一些应用可以添加新的基本数据、一些应用可以读取基本数据并创建继承的列族、一些应用则只允许浏览数据(甚至可能因 为隐私的原因不能浏览所有数据)。
时间戳
HBase中通过row和columns确定的为一个存贮单元称为cell。每个cell都保存着同一份数据的多个版本。版本通过时间戳来索引。时间戳的类型是64位整型。时间戳可以由hbase(在数据写入时自动 )赋值,此时时间戳是精确到毫秒的当前系统时间。时间戳也可以由客户显式赋值。如果应用程序要避免数据版本冲突,就必须自己生成具有唯一性的时间戳。每个cell中,不同版本的数据按照时间倒序排序,即最新的数据排在最前面。
为了避免数据存在过多版本造成的的管理 (包括存贮和索引)负担,hbase提供了两种数据版本回收方式。
一是保存数据的最后n个版本
二是保存最近一段时间内的版本(比如最近七天)。
用户可以针对每个列族进行设置。
Cell
由{row key, column(=<family> + <label>), version}唯一确定的单元。cell中的数据是没有类型的,全部是字节码形式存贮。
三、物理存储
1 已经提到过,Table中的所有行都按照row key的字典序排列。
2 Table在行的方向上分割为多个Hregion。
3 region按大小分割的,每个表一开始只有一个region,随着数据不断插入表,region不断增大,当增大到一个阀值的时候,Hregion就会等分会两个新的Hregion。当table中的行不断增多,就会有越来越多的Hregion。
4 Hregion是Hbase中分布式存储和负载均衡的最小单元。最小单元就表示不同的Hregion可以分布在不同的HRegion server上。但一个Hregion是不会拆分到多个server上的。
5 HRegion虽然是分布式存储的最小单元,但并不是存储的最小单元。
事实上,HRegion由一个或者多个Store组成,每个store保存一个columns family。
每个Strore又由一个memStore和0至多个StoreFile组成。如图:StoreFile以HFile格式保存在HDFS上。
HFile的格式为:
Trailer部分的格式:
HFile分为六个部分:
Data Block 段–保存表中的数据,这部分可以被压缩
Meta Block 段 (可选的)–保存用户自定义的kv对,可以被压缩。
File Info 段–Hfile的元信息,不被压缩,用户也可以在这一部分添加自己的元信息。
Data Block Index 段–Data Block的索引。每条索引的key是被索引的block的第一条记录的key。
Meta Block Index段 (可选的)–Meta Block的索引。
Trailer–这一段是定长的。保存了每一段的偏移量,读取一个HFile时,会首先 读取Trailer,Trailer保存了每个段的起始位置(段的Magic Number用来做安全check),然后,DataBlock Index会被读取到内存中,这样,当检索某个key时,不需要扫描整个HFile,而只需从内存中找到key所在的block,通过一次磁盘io将整个block读取到内存中,再找到需要的key。DataBlock Index采用LRU机制淘汰。
HFile的Data Block,Meta Block通常采用压缩方式存储,压缩之后可以大大减少网络IO和磁盘IO,随之而来的开销当然是需要花费cpu进行压缩和解压缩。
目标Hfile的压缩支持两种方式:Gzip,Lzo。
HLog(WAL log)
WAL 意为Write ahead log(http://en.wikipedia.org/wiki/Write-ahead_logging),类似mysql中的binlog,用来 做灾难恢复只用,Hlog记录数据的所有变更,一旦数据修改,就可以从log中进行恢复。
每个Region Server维护一个Hlog,而不是每个Region一个。这样不同region(来自不同table)的日志会混在一起,这样做的目的是不断追加单个文件相对于同时写多个文件而言,可以减少磁盘寻址次数,因此可以提高对table的写性能。带来的麻烦是,如果一台region server下线,为了恢复其上的region,需要将region server上的log进行拆分,然后分发到其它region server上进行恢复。
HLog文件就是一个普通的Hadoop Sequence File,Sequence File 的Key是HLogKey对象,HLogKey中记录了写入数据的归属信息,除了table和region名字外,同时还包括 sequence number和timestamp,timestamp是”写入时间”,sequence number的起始值为0,或者是最近一次存入文件系统中sequence number。HLog Sequece File的Value是HBase的KeyValue对象,即对应HFile中的KeyValue,可参见上文描述。
四、系统架构
Client
1 包含访问hbase的接口,client维护着一些cache来加快对hbase的访问,比如regione的位置信息。
Zookeeper
1 保证任何时候,集群中只有一个master
2 存贮所有Region的寻址入口。
3 实时监控Region Server的状态,将Region server的上线和下线信息实时通知给Master
4 存储Hbase的schema,包括有哪些table,每个table有哪些column family
Master
1 为Region server分配region
2 负责region server的负载均衡
3 发现失效的region server并重新分配其上的region
4 GFS上的垃圾文件回收
5 处理schema更新请求
Region Server
1 Region server维护Master分配给它的region,处理对这些region的IO请求
2 Region server负责切分在运行过程中变得过大的region
可以看到,client访问hbase上数据的过程并不需要master参与(寻址访问zookeeper和region server,数据读写访问regione server),master仅仅维护者table和region的元数据信息,负载很低。
五、关键算法/流程
region定位
系统如何找到某个row key (或者某个 row key range)所在的region
bigtable 使用三层类似B+树的结构来保存region位置。
第一层是保存zookeeper里面的文件,它持有root region的位置。
第二层root region是.META.表的第一个region其中保存了.META.z表其它region的位置。通过root region,我们就可以访问.META.表的数据。
.META.是第三层,它是一个特殊的表,保存了hbase中所有数据表的region 位置信息。
说明:
1 root region永远不会被split,保证了最需要三次跳转,就能定位到任意region 。
2.META.表每行保存一个region的位置信息,row key 采用表名+表的最后一样编码而成。
3 为了加快访问,.META.表的全部region都保存在内存中。
假设,.META.表的一行在内存中大约占用1KB。并且每个region限制为128MB。
那么上面的三层结构可以保存的region数目为:
(128MB/1KB) * (128MB/1KB) = = 2(34)个region
4 client会将查询过的位置信息保存缓存起来,缓存不会主动失效,因此如果client上的缓存全部失效,则需要进行6次网络来回,才能定位到正确的region(其中三次用来发现缓存失效,另外三次用来获取位置信息)。
读写过程
上文提到,hbase使用MemStore和StoreFile存储对表的更新。
数据在更新时首先写入Log(WAL log)和内存(MemStore)中,MemStore中的数据是排序的,当MemStore累计到一定阈值时,就会创建一个新的MemStore,并且将老的MemStore添加到flush队列,由单独的线程flush到磁盘上,成为一个StoreFile。于此同时,系统会在zookeeper中记录一个redo point,表示这个时刻之前的变更已经持久化了。(minor compact)
当系统出现意外时,可能导致内存(MemStore)中的数据丢失,此时使用Log(WAL log)来恢复checkpoint之后的数据。
前面提到过StoreFile是只读的,一旦创建后就不可以再修改。因此Hbase的更 新其实是不断追加的操作。当一个Store中的StoreFile达到一定的阈值后,就会进行一次合并(major compact),将对同一个key的修改合并到一起,形成一个大的StoreFile,当StoreFile的大小达到一定阈值后,又会对StoreFile进行split,等分为两个StoreFile。
由于对表的更新是不断追加的,处理读请求时,需要访问Store中全部的StoreFile和MemStore,将他们的按照row key进行合并,由于StoreFile和MemStore都是经过排序的,并且StoreFile带有内存中索引,合并的过程还是比较快。
写请求处理过程
1 client向region server提交写请求
2 region server找到目标region
3 region检查数据是否与schema一致
4 如果客户端没有指定版本,则获取当前系统时间作为数据版本
5 将更新写入WAL log
6 将更新写入Memstore
7 判断Memstore的是否需要flush为Store文件。
region分配
任何时刻,一个region只能分配给一个region server。master记录了当前有哪些可用的region server。以及当前哪些region分配给了哪些region server,哪些region还没有分配。当存在未分配的region,并且有一个region server上有可用空间时,master就给这个region server发送一个装载请求,把region分配给这个region server。region server得到请求后,就开始对此region提供服务。
region server上线
master使用zookeeper来跟踪region server状态。当某个region server启动时,会首先在zookeeper上的server目录下建立代表自己的文件,并获得该文件的独占锁。由于master订阅了server目录上的变更消息,当server目录下的文件出现新增或删除操作时,master可以得到来自zookeeper的实时通知。因此一旦region server上线,master能马上得到消息。
region server下线
当region server下线时,它和zookeeper的会话断开,zookeeper而自动释放代表这台server的文件上的独占锁。而master不断轮询server目录下文件的锁状态。如果master发现某个region server丢失了它自己的独占锁,(或者master连续几次和region server通信都无法成功),master就是尝试去获取代表这个region server的读写锁,一旦获取成功,就可以确定:
1 region server和zookeeper之间的网络断开了。
2 region server挂了。
的其中一种情况发生了,无论哪种情况,region server都无法继续为它的region提供服务了,此时master会删除server目录下代表这台region server的文件,并将这台region server的region分配给其它还活着的同志。
如果网络短暂出现问题导致region server丢失了它的锁,那么region server重新连接到zookeeper之后,只要代表它的文件还在,它就会不断尝试获取这个文件上的锁,一旦获取到了,就可以继续提供服务。
master上线
master启动进行以下步骤:
1 从zookeeper上获取唯一一个代码master的锁,用来阻止其它master成为master。
2 扫描zookeeper上的server目录,获得当前可用的region server列表。
3 和2中的每个region server通信,获得当前已分配的region和region server的对应关系。
4 扫描.META.region的集合,计算得到当前还未分配的region,将他们放入待分配region列表。
master下线
由于master只维护表和region的元数据,而不参与表数据IO的过程,master下线仅导致所有元数据的修改被冻结(无法创建删除表,无法修改表的schema,无法进行region的负载均衡,无法处理region上下线,无法进行region的合并,唯一例外的是region的split可以正常进行,因为只有region server参与),表的数据读写还可以正常进行。因此master下线短时间内对整个hbase集群没有影响。从上线过程可以看到,master保存的 信息全是可以冗余信息(都可以从系统其它地方收集到或者计算出来),因此,一般hbase集群中总是有一个master在提供服务,还有一个以上 的’master’在等待时机抢占它的位置。
转自:http://mvplee.iteye.com/blog/2247221
history
started by chad walters and jim
2006.11 G release paper on BigTable
2007.2 inital HBase prototype created as Hadoop contrib
2007.10 First useable Hbase
2008.1 Hadoop become Apache top-level project and Hbase becomes subproject
2008.10 Hbase 0.18,0.19 released
hbase是bigtable的开源山寨版本。是建立的hdfs之上,提供高可靠性、高性能、列存储、可伸缩、实时读写的数据库系统。
它介于nosql和RDBMS之间,仅能通过主键(row key)和主键的range来检索数据,仅支持单行事务(可通过hive支持来实现多表join等复杂操作)。主要用来存储非结构化和半结构化的松散数据。
与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。
HBase中的表一般有这样的特点:
1 大:一个表可以有上亿行,上百万列
2 面向列:面向列(族)的存储和权限控制,列(族)独立检索。
3 稀疏:对于为空(null)的列,并不占用存储空间,因此,表可以设计的非常稀疏。
二、逻辑视图
Row Key
与nosql数据库们一样,row key是用来检索记录的主键。访问hbase table中的行,只有三种方式:
1 通过单个row key访问
2 通过row key的range
3 全表扫描
Row key行键 (Row key)可以是任意字符串(最大长度是 64KB,实际应用中长度一般为 10-100bytes),在hbase内部,row key保存为字节数组。
存储时,数据按照Row key的字典序(byte order)排序存储。设计key时,要充分排序存储这个特性,将经常一起读取的行存储放到一起。(位置相关性)
注意:
字典序对int排序的结果是1,10,100,11,12,13,14,15,16,17,18,19,2,20,21,…,9,91,92,93,94,95,96,97,98,99。要保持整形的自然序,行键必须用0作左填充。
行的一次读写是原子操作 (不论一次读写多少列)。这个设计决策能够使用户很容易的理解程序在对同一个行进行并发更新操作时的行为。
列族
hbase表中的每个列,都归属与某个列族。列族是表的schema的一部分(而列不是),必须在使用表之前定义。列名都以列族作为前缀。例如courses:history,courses:math都属于courses这个列族。
访问控制、磁盘和内存的使用统计都是在列族层面进行的。实际应用中,列族上的控制权限能帮助我们管理不同类型的应用:我们允许一些应用可以添加新的基本数据、一些应用可以读取基本数据并创建继承的列族、一些应用则只允许浏览数据(甚至可能因 为隐私的原因不能浏览所有数据)。
时间戳
HBase中通过row和columns确定的为一个存贮单元称为cell。每个cell都保存着同一份数据的多个版本。版本通过时间戳来索引。时间戳的类型是64位整型。时间戳可以由hbase(在数据写入时自动 )赋值,此时时间戳是精确到毫秒的当前系统时间。时间戳也可以由客户显式赋值。如果应用程序要避免数据版本冲突,就必须自己生成具有唯一性的时间戳。每个cell中,不同版本的数据按照时间倒序排序,即最新的数据排在最前面。
为了避免数据存在过多版本造成的的管理 (包括存贮和索引)负担,hbase提供了两种数据版本回收方式。
一是保存数据的最后n个版本
二是保存最近一段时间内的版本(比如最近七天)。
用户可以针对每个列族进行设置。
Cell
由{row key, column(=<family> + <label>), version}唯一确定的单元。cell中的数据是没有类型的,全部是字节码形式存贮。
三、物理存储
1 已经提到过,Table中的所有行都按照row key的字典序排列。
2 Table在行的方向上分割为多个Hregion。
3 region按大小分割的,每个表一开始只有一个region,随着数据不断插入表,region不断增大,当增大到一个阀值的时候,Hregion就会等分会两个新的Hregion。当table中的行不断增多,就会有越来越多的Hregion。
4 Hregion是Hbase中分布式存储和负载均衡的最小单元。最小单元就表示不同的Hregion可以分布在不同的HRegion server上。但一个Hregion是不会拆分到多个server上的。
5 HRegion虽然是分布式存储的最小单元,但并不是存储的最小单元。
事实上,HRegion由一个或者多个Store组成,每个store保存一个columns family。
每个Strore又由一个memStore和0至多个StoreFile组成。如图:StoreFile以HFile格式保存在HDFS上。
HFile的格式为:
Trailer部分的格式:
HFile分为六个部分:
Data Block 段–保存表中的数据,这部分可以被压缩
Meta Block 段 (可选的)–保存用户自定义的kv对,可以被压缩。
File Info 段–Hfile的元信息,不被压缩,用户也可以在这一部分添加自己的元信息。
Data Block Index 段–Data Block的索引。每条索引的key是被索引的block的第一条记录的key。
Meta Block Index段 (可选的)–Meta Block的索引。
Trailer–这一段是定长的。保存了每一段的偏移量,读取一个HFile时,会首先 读取Trailer,Trailer保存了每个段的起始位置(段的Magic Number用来做安全check),然后,DataBlock Index会被读取到内存中,这样,当检索某个key时,不需要扫描整个HFile,而只需从内存中找到key所在的block,通过一次磁盘io将整个block读取到内存中,再找到需要的key。DataBlock Index采用LRU机制淘汰。
HFile的Data Block,Meta Block通常采用压缩方式存储,压缩之后可以大大减少网络IO和磁盘IO,随之而来的开销当然是需要花费cpu进行压缩和解压缩。
目标Hfile的压缩支持两种方式:Gzip,Lzo。
HLog(WAL log)
WAL 意为Write ahead log(http://en.wikipedia.org/wiki/Write-ahead_logging),类似mysql中的binlog,用来 做灾难恢复只用,Hlog记录数据的所有变更,一旦数据修改,就可以从log中进行恢复。
每个Region Server维护一个Hlog,而不是每个Region一个。这样不同region(来自不同table)的日志会混在一起,这样做的目的是不断追加单个文件相对于同时写多个文件而言,可以减少磁盘寻址次数,因此可以提高对table的写性能。带来的麻烦是,如果一台region server下线,为了恢复其上的region,需要将region server上的log进行拆分,然后分发到其它region server上进行恢复。
HLog文件就是一个普通的Hadoop Sequence File,Sequence File 的Key是HLogKey对象,HLogKey中记录了写入数据的归属信息,除了table和region名字外,同时还包括 sequence number和timestamp,timestamp是”写入时间”,sequence number的起始值为0,或者是最近一次存入文件系统中sequence number。HLog Sequece File的Value是HBase的KeyValue对象,即对应HFile中的KeyValue,可参见上文描述。
四、系统架构
Client
1 包含访问hbase的接口,client维护着一些cache来加快对hbase的访问,比如regione的位置信息。
Zookeeper
1 保证任何时候,集群中只有一个master
2 存贮所有Region的寻址入口。
3 实时监控Region Server的状态,将Region server的上线和下线信息实时通知给Master
4 存储Hbase的schema,包括有哪些table,每个table有哪些column family
Master
1 为Region server分配region
2 负责region server的负载均衡
3 发现失效的region server并重新分配其上的region
4 GFS上的垃圾文件回收
5 处理schema更新请求
Region Server
1 Region server维护Master分配给它的region,处理对这些region的IO请求
2 Region server负责切分在运行过程中变得过大的region
可以看到,client访问hbase上数据的过程并不需要master参与(寻址访问zookeeper和region server,数据读写访问regione server),master仅仅维护者table和region的元数据信息,负载很低。
五、关键算法/流程
region定位
系统如何找到某个row key (或者某个 row key range)所在的region
bigtable 使用三层类似B+树的结构来保存region位置。
第一层是保存zookeeper里面的文件,它持有root region的位置。
第二层root region是.META.表的第一个region其中保存了.META.z表其它region的位置。通过root region,我们就可以访问.META.表的数据。
.META.是第三层,它是一个特殊的表,保存了hbase中所有数据表的region 位置信息。
说明:
1 root region永远不会被split,保证了最需要三次跳转,就能定位到任意region 。
2.META.表每行保存一个region的位置信息,row key 采用表名+表的最后一样编码而成。
3 为了加快访问,.META.表的全部region都保存在内存中。
假设,.META.表的一行在内存中大约占用1KB。并且每个region限制为128MB。
那么上面的三层结构可以保存的region数目为:
(128MB/1KB) * (128MB/1KB) = = 2(34)个region
4 client会将查询过的位置信息保存缓存起来,缓存不会主动失效,因此如果client上的缓存全部失效,则需要进行6次网络来回,才能定位到正确的region(其中三次用来发现缓存失效,另外三次用来获取位置信息)。
读写过程
上文提到,hbase使用MemStore和StoreFile存储对表的更新。
数据在更新时首先写入Log(WAL log)和内存(MemStore)中,MemStore中的数据是排序的,当MemStore累计到一定阈值时,就会创建一个新的MemStore,并且将老的MemStore添加到flush队列,由单独的线程flush到磁盘上,成为一个StoreFile。于此同时,系统会在zookeeper中记录一个redo point,表示这个时刻之前的变更已经持久化了。(minor compact)
当系统出现意外时,可能导致内存(MemStore)中的数据丢失,此时使用Log(WAL log)来恢复checkpoint之后的数据。
前面提到过StoreFile是只读的,一旦创建后就不可以再修改。因此Hbase的更 新其实是不断追加的操作。当一个Store中的StoreFile达到一定的阈值后,就会进行一次合并(major compact),将对同一个key的修改合并到一起,形成一个大的StoreFile,当StoreFile的大小达到一定阈值后,又会对StoreFile进行split,等分为两个StoreFile。
由于对表的更新是不断追加的,处理读请求时,需要访问Store中全部的StoreFile和MemStore,将他们的按照row key进行合并,由于StoreFile和MemStore都是经过排序的,并且StoreFile带有内存中索引,合并的过程还是比较快。
写请求处理过程
1 client向region server提交写请求
2 region server找到目标region
3 region检查数据是否与schema一致
4 如果客户端没有指定版本,则获取当前系统时间作为数据版本
5 将更新写入WAL log
6 将更新写入Memstore
7 判断Memstore的是否需要flush为Store文件。
region分配
任何时刻,一个region只能分配给一个region server。master记录了当前有哪些可用的region server。以及当前哪些region分配给了哪些region server,哪些region还没有分配。当存在未分配的region,并且有一个region server上有可用空间时,master就给这个region server发送一个装载请求,把region分配给这个region server。region server得到请求后,就开始对此region提供服务。
region server上线
master使用zookeeper来跟踪region server状态。当某个region server启动时,会首先在zookeeper上的server目录下建立代表自己的文件,并获得该文件的独占锁。由于master订阅了server目录上的变更消息,当server目录下的文件出现新增或删除操作时,master可以得到来自zookeeper的实时通知。因此一旦region server上线,master能马上得到消息。
region server下线
当region server下线时,它和zookeeper的会话断开,zookeeper而自动释放代表这台server的文件上的独占锁。而master不断轮询server目录下文件的锁状态。如果master发现某个region server丢失了它自己的独占锁,(或者master连续几次和region server通信都无法成功),master就是尝试去获取代表这个region server的读写锁,一旦获取成功,就可以确定:
1 region server和zookeeper之间的网络断开了。
2 region server挂了。
的其中一种情况发生了,无论哪种情况,region server都无法继续为它的region提供服务了,此时master会删除server目录下代表这台region server的文件,并将这台region server的region分配给其它还活着的同志。
如果网络短暂出现问题导致region server丢失了它的锁,那么region server重新连接到zookeeper之后,只要代表它的文件还在,它就会不断尝试获取这个文件上的锁,一旦获取到了,就可以继续提供服务。
master上线
master启动进行以下步骤:
1 从zookeeper上获取唯一一个代码master的锁,用来阻止其它master成为master。
2 扫描zookeeper上的server目录,获得当前可用的region server列表。
3 和2中的每个region server通信,获得当前已分配的region和region server的对应关系。
4 扫描.META.region的集合,计算得到当前还未分配的region,将他们放入待分配region列表。
master下线
由于master只维护表和region的元数据,而不参与表数据IO的过程,master下线仅导致所有元数据的修改被冻结(无法创建删除表,无法修改表的schema,无法进行region的负载均衡,无法处理region上下线,无法进行region的合并,唯一例外的是region的split可以正常进行,因为只有region server参与),表的数据读写还可以正常进行。因此master下线短时间内对整个hbase集群没有影响。从上线过程可以看到,master保存的 信息全是可以冗余信息(都可以从系统其它地方收集到或者计算出来),因此,一般hbase集群中总是有一个master在提供服务,还有一个以上 的’master’在等待时机抢占它的位置。
转自:http://mvplee.iteye.com/blog/2247221
发表评论
文章已被作者锁定,不允许评论。
-
Hadoop namenode的fsimage与editlog详解
2017-05-19 10:04 1196Namenode主要维护两个文件,一个是fsimage,一个是 ... -
Hadoop HBase建表时预分区(region)的方法学习
2017-05-15 11:18 1199如果知道Hbase数据表的key的分布情况,就可以在建表的时候 ... -
Hadoop HBase行健(rowkey)设计原则学习
2017-05-15 10:34 1130Hbase是三维有序存储的,通过rowkey(行键),colu ... -
Hadoop HBase中split原理学习
2017-05-12 13:38 2286在Hbase中split是一个很重 ... -
Hadoop HBase中Compaction原理学习
2017-05-12 10:34 1004HBase Compaction策略 RegionServer ... -
Hadoop HBase性能优化学习
2017-05-12 09:15 691一、调整参数 入门级的调优可以从调整参数开始。投入小,回报快 ... -
Hadoop 分布式文件系统学习
2017-05-10 15:34 508一. 分布式文件系统 分布式文件系统,在整个分布式系统体系中处 ... -
Hadoop MapReduce处理wordcount代码分析
2017-04-28 14:25 598package org.apache.hadoop.exa ... -
Hadoop YARN完全分布式配置学习
2017-04-26 10:27 579版本及配置简介 Java: J ... -
Hadoop YARN各个组件和流程的学习
2017-04-24 19:04 653一、基本组成结构 * 集 ... -
Hadoop YARN(Yet Another Resource Negotiator)详细解析
2017-04-24 18:30 1164带有 MapReduce 的 Apache Had ... -
Hive 注意事项与扩展特性
2017-04-06 19:31 7561. 使用HIVE注意点 字符集 Hadoop和Hive都 ... -
Hive 元数据和QL基本操作学习整理
2017-04-06 14:36 1040Hive元数据库 Hive将元数据存储在RDBMS 中,一般常 ... -
Hive 文件压缩存储格式(STORED AS)
2017-04-06 09:35 2329Hive文件存储格式包括以下几类: 1.TEXTFILE ... -
Hive SQL自带函数总结
2017-04-05 19:25 1146字符串长度函数:length ... -
Hive 连接查询操作(不支持IN查询)
2017-04-05 19:16 733CREATE EXTERNAL TABLE IF NOT ... -
Hive优化学习(join ,group by,in)
2017-04-05 18:48 1820一、join优化 Join ... -
Hive 基础知识学习(语法)
2017-04-05 15:51 907一.Hive 简介 Hive是基于 Hadoop 分布式文件 ... -
Hive 架构与基本语法(OLAP)
2017-04-05 15:16 1258Hive 是什么 Hive是建立在Hadoop上的数据仓库基础 ... -
Hadoop MapReduce操作Hbase范例学习(TableMapReduceUtil)
2017-03-24 15:37 1221Hbase里的数据量一般都 ...
相关推荐
这个配置过程是一个相对复杂的任务,需要对Linux系统管理、网络配置、Java开发环境以及Hadoop、Hbase、Zookeeper的原理有深入理解。同时,还需要关注安全性和性能优化,例如限制不必要的网络访问,调整内存和CPU资源...
在构建大数据处理环境时,Hadoop、HBase、Spark和Hive是四个核心组件,它们协同工作以实现高效的数据存储、处理和分析。本教程将详细介绍如何在Ubuntu系统上搭建这些组件的集群。 1. **Hadoop**:Hadoop是Apache...
HBase则是在Hadoop之上的一个分布式、列族式的NoSQL数据库,它支持实时读写,特别适合处理大规模半结构化或非结构化数据。 首先,让我们深入了解HDFS。HDFS设计的目标是处理PB级别的数据,通过将大文件分割成块并在...
HBase利用Hadoop的分布式文件系统存储数据,并提供列族、表和行的结构,使得大规模数据的管理更为高效。在hbase-release-HDP-3.1.5.0-152-tag.tar.gz文件中,包含了HBase的源代码,开发者可以深入学习其内部机制,...
HBase则是基于Hadoop的分布式数据库,尤其适合处理大规模的非结构化数据。下面将详细阐述这两个技术以及它们相关的jar包。 1. Hadoop:Hadoop的核心组件包括HDFS(Hadoop Distributed File System)和MapReduce。...
【标题】:“hadoop,hive,hbase学习资料”是一份综合性的学习资源,涵盖了大数据处理领域中的三个核心组件——Hadoop、Hive和Hbase。这些工具在大数据处理和分析中发挥着至关重要的作用。 【描述】:描述指出这份...
Hadoop和HBase是两种广泛应用于分布式存储架构的技术,本文将深入探讨Hadoop+HBase教程,教你如何搭建这种架构。 首先,Hadoop是一个由Apache软件基金会支持的开源分布式存储与计算框架,其发展起源于Apache Lucene...
HBase 提供了高可靠性、高性能、面向列的数据存储功能,特别适用于非结构化和半结构化数据。 #### HBase 的特点 - **面向列族存储**:数据按列族组织,同一列族内的数据存储在一起。 - **行键排序**:HBase 使用行...
HBase,全称Hadoop Database,是一款基于Hadoop生态系统的分布式列式存储系统,旨在处理海量结构化数据。它借鉴了Google Bigtable的设计思想,但开源并适应了开源社区的需求。HBase的核心优势在于它的高可靠性、高...
通过学习和查阅这些CHM文件,开发者可以深入理解Hadoop和HBase的工作原理,熟练掌握其API使用,从而提升大数据处理和分析的效率。同时,Java API文档也确保了开发者对基础编程语言有扎实的理解,有助于编写高效、...
**HBase** 是基于Hadoop的分布式列式数据库,它提供实时读写能力,适用于半结构化或非结构化的海量数据存储。HBase的数据模型类似于Google的Bigtable,支持稀疏存储,能够快速查询大规模数据。 **Hive** 是一个基于...
《深入解析Hadoop之HBase 0.99.2源码分析》 在当今的信息化社会,大数据处理已经成为企业核心竞争力的关键要素...通过对这些源码的深入学习,开发者不仅能掌握HBase的工作原理,还能为自己的项目提供有力的技术支持。
分布式索引集群的研究涉及了Hadoop的架构、HDFS文件系统、MapReduce算法和HBase存储模型等多个方面的知识。Hadoop的架构分为Master节点和Slave节点,其中Master节点运行NameNode、SecondaryNameNode、JobTracker等...
HBase的LSM(Log-Structured Merge)树是一种优化的存储结构,将写入操作的增量存储在内存中,定期将这些小文件合并到磁盘上的大文件,以减少磁盘I/O。这种设计使得HBase在处理大量写入时仍然能保持高性能。 HBase...
标题中的“intel-Hadoop.rar_hadoop_hbase”表明这是一个关于...通过深入学习这份开发者指南,开发者不仅可以掌握Hadoop和HBase的基本使用,还能了解到如何在Intel平台上有效地利用这些工具,实现高性能的大数据处理。
根据提供的文件信息,我们可以从以下几个方面来探讨与Hadoop、...HBase为结构化数据提供高效的存储方案;而Spark则集成了多种数据处理功能,提高了开发效率。通过这些工具的组合使用,可以构建出强大的大数据处理系统。
在大数据处理领域,Hadoop、HBase、Hive、Pig和Zookeeper是五款非常重要的工具,它们各自承担着不同的角色,共同构建了一个高效、...在学习过程中,可以通过文档、教程和实践案例深入理解它们的工作原理和应用场景。
它提供了对大规模视频数据的分布式处理、存储以及查询功能,帮助理解Hadoop和HBase在实际应用中的工作原理。 【知识点详细说明】: 1. **Hadoop**:Hadoop是Apache基金会开发的一个开源框架,主要用于处理和存储...
本文总结了Hadoop、HBase、Hive以及Spark等大数据技术的相关面试知识点,包括HBase与Hive的关系、HBase的数据结构、Spark Core与Spark SQL的比较、RDD vs DataFrame vs DataSet、Scala与Java的互操作性、为什么选择...