`

java 深入分析ConcurrentHashMap

    博客分类:
  • java
 
阅读更多
线程不安全的HashMap

因为多线程环境下,使用HashMap进行put操作会引起死循环,导致CPU利用率接近100%,所以在并发情况下不能使用HashMap,如以下代码

final HashMap<String, String> map = new HashMap<String, String>(2);
Thread t = new Thread(new Runnable() {
    @Override
    public void run() {
        for (int i = 0; i < 10000; i++) {
            new Thread(new Runnable() {
                @Override
                public void run() {
                    map.put(UUID.randomUUID().toString(), "");
                }
            }, "ftf" + i).start();
        }
    }
}, "ftf");
t.start();
t.join();


效率低下的Hashtable容器

Hashtable容器使用synchronized来保证线程安全,但在线程竞争激烈的情况下Hashtable的效率非常低下。因为当一个线程访问Hashtable的同步方法时,其他线程访问Hashtable的同步方法时,可能会进入阻塞或轮询状态。如线程1使用put进行添加元素,线程2不但不能使用put方法添加元素,并且也不能使用get方法来获取元素,所以竞争越激烈效率越低。

ConcurrentHashMap

一个ConcurrentHashMap由多个segment组成每一个segment都包含了一个HashEntry数组的hashtable, 每一个segment包含了对自己的hashtable的操作,比如get,put,replace等操作,这些操作发生的时候,对自己的hashtable进行锁定。由于每一个segment写操作只锁定自己的hashtable,所以可能存在多个线程同时写的情况,性能无疑好于只有一个hashtable锁定的情况。
Segment类继承于ReentrantLock,主要是为了使用ReentrantLock的锁,ReentrantLock的实现比 synchronized在多个线程争用下的总体开销小。

锁分段技术

Hashtable容器在竞争激烈的并发环境下表现出效率低下的原因是所有访问Hashtable的线程都必须竞争同一把锁,那假如容器里有多把锁,每一把锁用于锁容器其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效的提高并发访问效率,这就是ConcurrentHashMap所使用的锁分段技术首先将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问。
ConcurrentHashMap仅仅锁定map的某个部分,而Hashtable则会锁定整个map。

ConcurrentHashMap的结构

我们通过ConcurrentHashMap的类图来分析ConcurrentHashMap的结构。



ConcurrentHashMap是由Segment数组结构和HashEntry数组结构组成。Segment是一种可重入锁ReentrantLock,在ConcurrentHashMap里扮演锁的角色,HashEntry则用于存储键值对数据。一个ConcurrentHashMap里包含一个Segment数组,Segment的结构和HashMap类似,是一种数组和链表结构, 一个Segment里包含一个HashEntry数组,每个HashEntry是一个链表结构的元素, 每个Segment守护者一个HashEntry数组里的元素,当对HashEntry数组的数据进行修改时,必须首先获得它对应的Segment锁。



ConcurrentHashMap的初始化

ConcurrentHashMap初始化方法是通过initialCapacity,loadFactor, concurrencyLevel几个参数来初始化segments数组,段偏移量segmentShift,段掩码segmentMask和每个segment里的HashEntry数组 。

初始化segments数组。让我们来看一下初始化segmentShift,segmentMask和segments数组的源代码。

if (concurrencyLevel > MAX_SEGMENTS)
    concurrencyLevel = MAX_SEGMENTS;

// Find power-of-two sizes best matching arguments
int sshift = 0;
int ssize = 1;
while (ssize < concurrencyLevel) {
    ++sshift;
    ssize <<= 1;
}
segmentShift = 32 - sshift;
segmentMask = ssize - 1;
this.segments = Segment.newArray(ssize);


由上面的代码可知segments数组的长度size通过concurrencyLevel计算得出。为了能通过按位与的哈希算法来定位segments数组的索引,必须保证segments数组的长度是2的N次方(power-of-two size),所以必须计算出一个是大于或等于concurrencyLevel的最小的2的N次方值来作为segments数组的长度。假如concurrencyLevel等于14,15或16,size都会等于16,即容器里锁的个数也是16。注意concurrencyLevel的最大大小是65535,意味着segments数组的长度最大为65536,对应的二进制是16位。

初始化segmentShift和segmentMask。这两个全局变量在定位segment时的哈希算法里需要使用,sshift等于ssize从1向左移位的次数,在默认情况下concurrencyLevel等于16,1需要向左移位移动4次,所以sshift等于4。segmentShift用于定位参与hash运算的位数,segmentShift等于32减sshift,所以等于28,这里之所以用32是因为ConcurrentHashMap里的hash()方法输出的最大数是32位的,后面的测试中我们可以看到这点。segmentMask是哈希运算的掩码,等于ssize减1,即15,掩码的二进制各个位的值都是1。因为ssize的最大长度是65536,所以segmentShift最大值是16,segmentMask最大值是65535,对应的二进制是16位,每个位都是1。

初始化每个Segment。输入参数initialCapacity是ConcurrentHashMap的初始化容量,loadfactor是每个segment的负载因子,在构造方法里需要通过这两个参数来初始化数组中的每个segment。

if (initialCapacity > MAXIMUM_CAPACITY)
    initialCapacity = MAXIMUM_CAPACITY;
int c = initialCapacity / ssize;
if (c * ssize < initialCapacity)
    ++c;
int cap = 1;
while (cap < c)
    cap <<= 1;
for (int i = 0; i < this.segments.length; ++i)
    this.segments[i] = new Segment<K,V>(cap, loadFactor);


上面代码中的变量cap就是segment里HashEntry数组的长度,它等于initialCapacity除以ssize的倍数c,如果c大于1,就会取大于等于c的2的N次方值,所以cap不是1,就是2的N次方。segment的容量threshold=(int)cap*loadFactor,默认情况下initialCapacity等于16,loadfactor等于0.75,通过运算cap等于1,threshold等于零。

定位Segment

既然ConcurrentHashMap使用分段锁Segment来保护不同段的数据,那么在插入和获取元素的时候,必须先通过哈希算法定位到Segment。可以看到ConcurrentHashMap会首先使用Wang/Jenkins hash的变种算法对元素的hashCode进行一次再哈希。

private static int hash(int h) {
        h += (h << 15) ^ 0xffffcd7d;
        h ^= (h >>> 10);
        h += (h << 3);
        h ^= (h >>> 6);
        h += (h << 2) + (h << 14);
        return h ^ (h >>> 16);
    }

之所以进行再哈希,其目的是为了减少哈希冲突,使元素能够均匀的分布在不同的Segment上,从而提高容器的存取效率。假如哈希的质量差到极点,那么所有的元素都在一个Segment中,不仅存取元素缓慢,分段锁也会失去意义。我做了一个测试,不通过再哈希而直接执行哈希计算。
System.out.println(Integer.parseInt("0001111", 2) & 15);
System.out.println(Integer.parseInt("0011111", 2) & 15);
System.out.println(Integer.parseInt("0111111", 2) & 15);
System.out.println(Integer.parseInt("1111111", 2) & 15);


计算后输出的哈希值全是15,通过这个例子可以发现如果不进行再哈希,哈希冲突会非常严重,因为只要低位一样,无论高位是什么数,其哈希值总是一样。我们再把上面的二进制数据进行再哈希后结果如下,为了方便阅读,不足32位的高位补了0,每隔四位用竖线分割下。

可以发现每一位的数据都散列开了,通过这种再哈希能让数字的每一位都能参加到哈希运算当中,从而减少哈希冲突。ConcurrentHashMap通过以下哈希算法定位segment。

final Segment<K,V> segmentFor(int hash) {
        return segments[(hash >>> segmentShift) & segmentMask];
    }


默认情况下segmentShift为28,segmentMask为15,再哈希后的数最大是32位二进制数据,向右无符号移动28位,意思是让高4位参与到hash运算中, (hash >>> segmentShift) & segmentMask的运算结果分别是4,15,7和8,可以看到hash值没有发生冲突。

ConcurrentHashMap的get操作

Segment的get操作实现非常简单和高效。先经过一次再哈希,然后使用这个哈希值通过哈希运算定位到segment,再通过哈希算法定位到元素,代码如下:

public V get(Object key) {
    int hash = hash(key.hashCode());
    return segmentFor(hash).get(key, hash);
}


get操作的高效之处在于整个get过程不需要加锁,除非读到的值是空的才会加锁重读,我们知道Hashtable容器的get方法是需要加锁的,那么ConcurrentHashMap的get操作是如何做到不加锁的呢?原因是它的get方法里将要使用的共享变量都定义成volatile,如用于统计当前Segement大小的count字段和用于存储值的HashEntry的value。定义成volatile的变量,能够在线程之间保持可见性,能够被多线程同时读,并且保证不会读到过期的值,但是只能被单线程写(有一种情况可以被多线程写,就是写入的值不依赖于原值),在get操作里只需要读不需要写共享变量count和value,所以可以不用加锁。之所以不会读到过期的值,是根据java内存模型的happen before原则,对volatile字段的写入操作先于读操作,即使两个线程同时修改和获取volatile变量,get操作也能拿到最新的值,这是用volatile替换锁的经典应用场景。

transient volatile int count;
volatile V value;


在定位元素的代码里我们可以发现定位HashEntry和定位Segment的哈希算法虽然一样,都与数组的长度减去一相与,但是相与的值不一样,定位Segment使用的是元素的hashcode通过再哈希后得到的值的高位,而定位HashEntry直接使用的是再哈希后的值。其目的是避免两次哈希后的值一样,导致元素虽然在Segment里散列开了,但是却没有在HashEntry里散列开。

hash >>> segmentShift) & segmentMask//定位Segment所使用的hash算法
int index = hash & (tab.length - 1);// 定位HashEntry所使用的hash算法


ConcurrentHashMap的Put操作

由于put方法里需要对共享变量进行写入操作,所以为了线程安全,在操作共享变量时必须得加锁。Put方法首先定位到Segment,然后在Segment里进行插入操作。插入操作需要经历两个步骤,第一步判断是否需要对Segment里的HashEntry数组进行扩容,第二步定位添加元素的位置然后放在HashEntry数组里。

是否需要扩容。在插入元素前会先判断Segment里的HashEntry数组是否超过容量(threshold),如果超过阀值,数组进行扩容。值得一提的是,Segment的扩容判断比HashMap更恰当,因为HashMap是在插入元素后判断元素是否已经到达容量的,如果到达了就进行扩容,但是很有可能扩容之后没有新元素插入,这时HashMap就进行了一次无效的扩容。

如何扩容。扩容的时候首先会创建一个两倍于原容量的数组,然后将原数组里的元素进行再hash后插入到新的数组里。为了高效ConcurrentHashMap不会对整个容器进行扩容,而只对某个segment进行扩容。

ConcurrentHashMap的size操作

如果我们要统计整个ConcurrentHashMap里元素的大小,就必须统计所有Segment里元素的大小后求和。Segment里的全局变量count是一个volatile变量,那么在多线程场景下,我们是不是直接把所有Segment的count相加就可以得到整个ConcurrentHashMap大小了呢?不是的,虽然相加时可以获取每个Segment的count的最新值,但是拿到之后可能累加前使用的count发生了变化,那么统计结果就不准了。所以最安全的做法,是在统计size的时候把所有Segment的put,remove和clean方法全部锁住,但是这种做法显然非常低效。 因为在累加count操作过程中,之前累加过的count发生变化的几率非常小,所以ConcurrentHashMap的做法是先尝试2次通过不锁住Segment的方式来统计各个Segment大小,如果统计的过程中,容器的count发生了变化,则再采用加锁的方式来统计所有Segment的大小。

那么ConcurrentHashMap是如何判断在统计的时候容器是否发生了变化呢?使用modCount变量,在put , remove和clean方法里操作元素前都会将变量modCount进行加1,那么在统计size前后比较modCount是否发生变化,从而得知容器的大小是否发生变化。

转自:http://blog.csdn.net/kobejayandy/article/details/16370973
参考:http://www.ibm.com/developerworks/cn/java/java-lo-concurrenthashmap/



  • 大小: 62 KB
  • 大小: 61.4 KB
分享到:
评论
发表评论

文章已被作者锁定,不允许评论。

相关推荐

    24 经典并发容器,多线程面试必备。—深入解析ConcurrentHashMap.pdf

    【源码分析】深入理解`ConcurrentHashMap`的工作原理,需要查看其源码,特别是`put`、`get`、`resize`等关键操作,以及在不同版本中的变化,例如Java 8引入的红黑树优化。 总结,`ConcurrentHashMap`是Java并发编程...

    Java源码解析ConcurrentHashMap的初始化

    今天,我们将深入探讨ConcurrentHashMap的初始化过程,并分析其多线程间的同步机制。 首先,看一下ConcurrentHashMap的初始化代码: ```java private final Node,V&gt;[] initTable() { Node,V&gt;[] tab; int sc; ...

    ConcurrentHashMap底层实现机制的分析1

    在本文中,我们将深入探索 ConcurrentHashMap 的高并发实现机制,并分析其在 Java 内存模型基础上的实现原理。了解 ConcurrentHashMap 的实现机制有助于我们更好地理解 Java 并发编程的原理和技术。 一、Java 内存...

    ConcurrentHashMap共18页.pdf.zip

    综上所述,"ConcurrentHashMap共18页.pdf.zip"这份文档很可能是深入分析 ConcurrentHashMap 的详细指南,涵盖了其设计原理、实现机制以及最佳实践。如果你对并发编程或者Java集合框架有深入需求,这份资料将是一份...

    Java-concurrentMap-内存模型深入分析-HotCode

    本文将深入探讨`concurrentMap`在Java内存模型(JMM,Java Memory Model)中的实现原理,以及如何通过HotCode优化并发性能。 Java内存模型定义了线程之间的共享变量访问规则,确保在多线程环境下正确地同步数据。...

    JDK1.8中ConcurrentHashMap中computeIfAbsent死循环bug.docx

    我们首先来理解`computeIfAbsent`方法的基本概念,然后再深入分析这个问题的成因及解决方案。 `computeIfAbsent`是JDK 1.8中新增的一个功能强大的方法,它的作用是在给定的键不存在于映射中时,通过提供的函数来...

    聊聊并发(4)深入分析ConcurrentHashMapJ

    本文将深入分析`ConcurrentHashMap`的设计原理、性能特点以及常见使用场景,帮助你提升Java并发编程的技能。 `ConcurrentHashMap`是`java.util.concurrent`包下的一个类,它在`HashMap`的基础上进行了优化,以适应...

    深入理解Java内存模型 pdf 超清版

    深入理解Java内存模型,不仅能够帮助我们编写出高效、线程安全的代码,还能在面临并发问题时提供有力的分析和解决手段。通过阅读《深入理解Java内存模型》这本书,开发者可以进一步掌握Java并发编程的核心技术,提升...

    Java源码分析及个人总结

    Java源码分析是软件开发过程中一个重要的学习环节,它能帮助开发者深入理解代码背后的逻辑,提升编程技巧,以及优化程序性能。在这个过程中,我们通常会关注类的设计、算法的应用、数据结构的选择,以及如何利用Java...

    ConcurrentHashMap之实现细节

    本文将深入探讨`ConcurrentHashMap`的关键实现细节,包括其核心设计思想——锁分离(Lock Stripping),以及如何通过不可变性和易变性的巧妙结合来优化读取性能。 #### 二、锁分离技术 锁分离是`ConcurrentHashMap...

    java高并发程序设计(原版电子书)

    4. **并发集合**:深入分析在并发环境中使用的特殊集合,如`ConcurrentHashMap`、`CopyOnWriteArrayList`和`ConcurrentLinkedQueue`,它们为并发操作提供了线程安全的解决方案。 5. **并发工具类**:介绍`...

    Java 并发编程实战.pdf

    此外,该书可能会对Java中一些新的并发API进行探讨,如java.util.concurrent包下的工具类和接口,例如Executor框架、Future、CompletableFuture、ConcurrentHashMap、Semaphore等。这些工具类和接口在构建大规模并发...

    java深入冒险

    《Java深入冒险》这篇博文,结合“源码”和“工具”的标签,旨在探讨Java编程语言的高级概念和深入理解,以及如何利用各种工具来提升开发效率和代码质量。在这个过程中,我们将涵盖多个核心主题,旨在帮助开发者从...

    java版msn Java源码 搜集的Java msn代码

    通过阅读和分析这个Java版MSN的源码,开发者不仅可以掌握即时通讯软件的实现原理,还能提升自己的Java编程技巧,特别是网络编程和多线程方面的能力。同时,这也是一个实践Java面向对象设计和编程思想的好机会。

    java 并发编程的艺术pdf清晰完整版 源码

    3. **并发集合**:书中会深入分析并发集合类的设计和使用,如ConcurrentHashMap如何实现线程安全的读写操作,以及CopyOnWriteArrayList在迭代时的线程安全性。 4. **线程池**:Java的Executor框架是管理线程的重要...

    Java 性能分析

    在Java性能分析领域,开发者需要深入理解程序运行的效率,以优化系统性能并解决潜在问题。本文将基于标题“Java性能分析”展开讨论,结合标签“源码”和“工具”,探讨如何通过分析源代码和利用相关工具来提升Java...

    Java最新开发手册(黄山版)

    3. 并发集合:探讨Java并发编程中的ConcurrentHashMap、CopyOnWriteArrayList等线程安全的集合类。 三、泛型 1. 泛型的概念:解释泛型的基本用法,如何限制类型参数,以及通配符的使用。 2. 泛型方法与泛型类:探讨...

    25本java高手合集 各种底层分析各种精华

    这份“25本Java高手合集”无疑是Java开发者们的一份宝贵资源,它涵盖了各种底层分析和精华知识点,旨在帮助读者深入理解Java的核心原理,提升编程技能。 在Java的世界里,JDBC(Java Database Connectivity)是连接...

    Java系列深入解析Java多线程

    本文将深入探讨Java多线程的各个方面,包括基础知识、创建线程、线程同步与通信、死锁问题以及线程池。 1. **基础知识** - **线程与进程**:线程是操作系统分配CPU时间的基本单位,而进程是系统中运行的程序实例。...

Global site tag (gtag.js) - Google Analytics