`

kmp算法分析

 
阅读更多
我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法。KMP算法是拿来处理字符串匹配的。换句话说,给你两个字符串,你需要回答,B串是否是A串的子串(A串是否包含B串)。比如,字符串A="I'm matrix67",字符串B="matrix",我们就说B是A的子串。你可以委婉地问你的MM:“假如你要向你喜欢的人表白的话,我的名字是你的告白语中的子串吗?”

    解决这类问题,通常我们的方法是枚举从A串的什么位置起开始与B匹配,然后验证是否匹配。假如A串长度为n,B串长度为m,那么这种方法的复杂度是O (mn)的。虽然很多时候复杂度达不到mn(验证时只看头一两个字母就发现不匹配了),但我们有许多“最坏情况”,比如,A= "aaaaaaaaaaaaaaaaaaaaaaaaaab",B="aaaaaaaab"。我们将介绍的是一种最坏情况下O(n)的算法(这里假设 m<=n),即传说中的KMP算法。

    之所以叫做KMP,是因为这个算法是由Knuth、Morris、Pratt三个提出来的,取了这三个人的名字的头一个字母。这时,或许你突然明白了AVL 树为什么叫AVL,或者Bellman-Ford为什么中间是一杠不是一个点。有时一个东西有七八个人研究过,那怎么命名呢?通常这个东西干脆就不用人名字命名了,免得发生争议,比如“3x+1问题”。扯远了。

    个人认为KMP是最没有必要讲的东西,因为这个东西网上能找到很多资料。但网上的讲法基本上都涉及到“移动(shift)”、“Next函数”等概念,这非常容易产生误解(至少一年半前我看这些资料学习KMP时就没搞清楚)。在这里,我换一种方法来解释KMP算法。

    假如,A="abababaababacb",B="ababacb",我们来看看KMP是怎么工作的。我们用两个指针i和j分别表示,A[i-j+ 1..i]与B[1..j]完全相等。也就是说,i是不断增加的,随着i的增加j相应地变化,且j满足以A[i]结尾的长度为j的字符串正好匹配B串的前 j个字符(j当然越大越好),现在需要检验A[i+1]和B[j+1]的关系。当A[i+1]=B[j+1]时,i和j各加一;什么时候j=m了,我们就说B是A的子串(B串已经整完了),并且可以根据这时的i值算出匹配的位置。当A[i+1]<>B[j+1],KMP的策略是调整j的位置(减小j值)使得A[i-j+1..i]与B[1..j]保持匹配且新的B[j+1]恰好与A[i+1]匹配(从而使得i和j能继续增加)。我们看一看当 i=j=5时的情况。

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B = a b a b a c b
    j = 1 2 3 4 5 6 7

    此时,A[6]<>B[6]。这表明,此时j不能等于5了,我们要把j改成比它小的值j'。j'可能是多少呢?仔细想一下,我们发现,j'必须要使得B[1..j]中的头j'个字母和末j'个字母完全相等(这样j变成了j'后才能继续保持i和j的性质)。这个j'当然要越大越好。在这里,B [1..5]="ababa",头3个字母和末3个字母都是"aba"。而当新的j为3时,A[6]恰好和B[4]相等。于是,i变成了6,而j则变成了 4:

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =     a b a b a c b
    j =     1 2 3 4 5 6 7

    从上面的这个例子,我们可以看到,新的j可以取多少与i无关,只与B串有关。我们完全可以预处理出这样一个数组P[j],表示当匹配到B数组的第j个字母而第j+1个字母不能匹配了时,新的j最大是多少。P[j]应该是所有满足B[1..P[j]]=B[j-P[j]+1..j]的最大值。
    再后来,A[7]=B[5],i和j又各增加1。这时,又出现了A[i+1]<>B[j+1]的情况:

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =     a b a b a c b
    j =     1 2 3 4 5 6 7

    由于P[5]=3,因此新的j=3:

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =         a b a b a c b
    j =         1 2 3 4 5 6 7

    这时,新的j=3仍然不能满足A[i+1]=B[j+1],此时我们再次减小j值,将j再次更新为P[3]:

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =             a b a b a c b
    j =             1 2 3 4 5 6 7

    现在,i还是7,j已经变成1了。而此时A[8]居然仍然不等于B[j+1]。这样,j必须减小到P[1],即0:

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =               a b a b a c b
    j =             0 1 2 3 4 5 6 7

    终于,A[8]=B[1],i变为8,j为1。事实上,有可能j到了0仍然不能满足A[i+1]=B[j+1](比如A[8]="d"时)。因此,准确的说法是,当j=0了时,我们增加i值但忽略j直到出现A[i]=B[1]为止。
    这个过程的代码很短(真的很短),我们在这里给出:

j:=0;
for i:=1 to n do
begin
   while (j>0) and (B[j+1]<>A[i]) do j:=P[j];
   if B[j+1]=A[i] then j:=j+1;
   if j=m then
   begin
      writeln('Pattern occurs with shift ',i-m);
      j:=P[j];
   end;
end;

    最后的j:=P[j]是为了让程序继续做下去,因为我们有可能找到多处匹配。
    这个程序或许比想像中的要简单,因为对于i值的不断增加,代码用的是for循环。因此,这个代码可以这样形象地理解:扫描字符串A,并更新可以匹配到B的什么位置。

    现在,我们还遗留了两个重要的问题:一,为什么这个程序是线性的;二,如何快速预处理P数组。
    为什么这个程序是O(n)的?其实,主要的争议在于,while循环使得执行次数出现了不确定因素。我们将用到时间复杂度的摊还分析中的主要策略,简单地说就是通过观察某一个变量或函数值的变化来对零散的、杂乱的、不规则的执行次数进行累计。KMP的时间复杂度分析可谓摊还分析的典型。我们从上述程序的j 值入手。每一次执行while循环都会使j减小(但不能减成负的),而另外的改变j值的地方只有第五行。每次执行了这一行,j都只能加1;因此,整个过程中j最多加了n个1。于是,j最多只有n次减小的机会(j值减小的次数当然不能超过n,因为j永远是非负整数)。这告诉我们,while循环总共最多执行了n次。按照摊还分析的说法,平摊到每次for循环中后,一次for循环的复杂度为O(1)。整个过程显然是O(n)的。这样的分析对于后面P数组预处理的过程同样有效,同样可以得到预处理过程的复杂度为O(m)。
    预处理不需要按照P的定义写成O(m^2)甚至O(m^3)的。我们可以通过P[1],P[2],...,P[j-1]的值来获得P[j]的值。对于刚才的B="ababacb",假如我们已经求出了P[1],P[2],P[3]和P[4],看看我们应该怎么求出P[5]和P[6]。P[4]=2,那么P [5]显然等于P[4]+1,因为由P[4]可以知道,B[1,2]已经和B[3,4]相等了,现在又有B[3]=B[5],所以P[5]可以由P[4] 后面加一个字符得到。P[6]也等于P[5]+1吗?显然不是,因为B[ P[5]+1 ]<>B[6]。那么,我们要考虑“退一步”了。我们考虑P[6]是否有可能由P[5]的情况所包含的子串得到,即是否P[6]=P[ P[5] ]+1。这里想不通的话可以仔细看一下:

        1 2 3 4 5 6 7
    B = a b a b a c b
    P = 0 0 1 2 3 ?

    P[5]=3是因为B[1..3]和B[3..5]都是"aba";而P[3]=1则告诉我们,B[1]、B[3]和B[5]都是"a"。既然P[6]不能由P[5]得到,或许可以由P[3]得到(如果B[2]恰好和B[6]相等的话,P[6]就等于P[3]+1了)。显然,P[6]也不能通过P[3]得到,因为B[2]<>B[6]。事实上,这样一直推到P[1]也不行,最后,我们得到,P[6]=0。
    怎么这个预处理过程跟前面的KMP主程序这么像呢?其实,KMP的预处理本身就是一个B串“自我匹配”的过程。它的代码和上面的代码神似:

P[1]:=0;
j:=0;
for i:=2 to m do
begin
   while (j>0) and (B[j+1]<>B[i]) do j:=P[j];
   if B[j+1]=B[i] then j:=j+1;
   P[i]:=j;
end;

    最后补充一点:由于KMP算法只预处理B串,因此这种算法很适合这样的问题:给定一个B串和一群不同的A串,问B是哪些A串的子串。

    串匹配是一个很有研究价值的问题。事实上,我们还有后缀树,自动机等很多方法,这些算法都巧妙地运用了预处理,从而可以在线性的时间里解决字符串的匹配。我们以后来说。
分享到:
评论

相关推荐

    文档助手算法以及算法分析.rar_KMP算法_算法

    《文档助手算法以及KMP算法分析》 在信息技术领域,高效的数据处理和文本搜索是至关重要的,这往往依赖于各种高级算法。KMP(Knuth-Morris-Pratt)算法,一种字符串匹配算法,因其高效的性能在文档助手类应用中得到...

    算法分析与设计KMP算法字符串改进

    《算法分析与设计:KMP算法的字符串匹配优化》 KMP算法,全称为Knuth-Morris-Pratt算法,是计算机科学中一种用于字符串匹配的高效算法。它避免了在进行比较时出现的不必要的回溯,从而显著提高了匹配效率。在给定的...

    数据结果 kmp算法实验报告

    ### 数据结果 KMP算法实验报告 #### 实验背景与目的 本实验主要针对《数据结构》课程中的字符串处理部分,具体涉及的是模式匹配算法——KMP算法。通过实验加深学生对串类型及其基本操作的理解,并重点掌握两种重要...

    Kmp算法Java实现源码

    KMP算法是通过分析子串,预先计算每个位置发生不匹配的时候,所需GOTO的下一个比较位置,整理出来一个next数组,然后在上面的算法中使用。

    易语言KMP算法模块

    理解并掌握易语言KMP算法模块对于进行文本处理、数据分析以及日志分析等任务非常有帮助。它可以帮助你更有效地在大量文本中查找特定模式,提升程序的运行效率。同时,KMP算法也是字符串匹配领域的一个经典算法,学习...

    传统KMP算法与改进KMP算法的对比

    KMP算法,全称为Knuth-Morris-...总的来说,KMP算法及其改进版本在文本处理、搜索引擎、数据分析等领域有广泛应用。通过深入理解算法原理,结合实际应用场景选择合适的算法变体,可以有效地提高程序的效率和实用性。

    模式匹配的KMP算法

    程序的设计和实现过程中,我们详细介绍了数据结构、算法设计、程序实现等知识点,并且对KMP算法的实现过程进行了详细分析。 模式匹配的KMP算法是计算机科学领域中的一种经典算法,具有广泛的应用前景,本课程设计...

    BF算法和KMP算法

    BF 算法和 KMP 算法在字符串匹配中的应用 BF 算法和 KMP 算法是两种常用的字符串匹配算法,分别应用于不同的场景中。本文将对这两种算法进行详细的分析和比较,以便更好地理解它们的原理和应用。 BF 算法 BF ...

    kmp算法详解及练习

    以主串`A = "abababaababacb"`和模式串`B = "ababacb"`为例,我们来逐步分析KMP算法的具体执行过程。 1. **初始化**: `i = 0`, `j = 0`。 2. **逐字符匹配**: - 当`i = 1`时,`A[1] = a`,`B[1] = a`,`i++`,`j++...

    字符串KMP算法c语言

    通过以上分析,我们不难看出KMP算法在字符串匹配中的高效性和实用性,尤其是在处理大量文本数据时,其优势更为明显。对于初学者而言,深入理解KMP算法的工作原理并掌握其实现细节,不仅能够提升编程技能,还能在实际...

    模式匹配KMP算法

    模式匹配 KMP 算法 模式匹配 KMP 算法是一种高效的字符串匹配算法,由 D.E.Knuth、J.H.Morris 和 V.R.Pratt 同时发现。该算法可以解决模式匹配的问题,即在一个大字符串中查找一个模式字符串的出现位置。 模式匹配...

    完全掌握KMP算法思想

    ### 完全掌握KMP算法思想 #### KMP算法概览 KMP算法,全称为Knuth-Morris-Pratt算法,是一种高效的字符串匹配算法,主要用于在一个文本串中寻找一个模式串的所有出现位置。相较于朴素的字符串匹配算法,KMP算法...

    KMP算法的图形界面实现

    通过分析和运行这些代码,我们可以更深入地了解KMP算法的图形化实现细节,包括具体的编程语言选择、界面布局、数据结构以及算法优化等方面的知识。这种实践性的学习方式有助于提升我们对理论知识的掌握和应用能力。

    数据结构之KMP算法

    数据结构是计算机科学中的核心概念,它涉及到如何高效地存储和...学习KMP算法有助于提升解决相关问题的能力,如文本分析、文件查找等。通过深入研究压缩包中的代码和文档,可以进一步提升对KMP算法的理解和应用技巧。

    KMP算法学习 算法分析

    KMP算法常用于文本处理、数据搜索、编译器中的词法分析等领域,尤其是在处理长字符串的匹配问题时,其效率优势尤为明显。 总的来说,KMP算法通过预处理部分匹配信息,提高了字符串匹配的效率,是解决字符串匹配...

    《字符串模式匹配KMP算法》教学课例设计[归纳].pdf

    我们使用的教材是清华大学严蔚敏教授编写的《数据结构(C语言版)》,该教材难度较大,其实验方法特别是ADT方法在教材中介绍较少,KMP算法更是从理论分析的角度介绍了匹配算法和next的计算,自学难度很大。...

    数据结构(C语言)--模式匹配--KMP算法

    `KMP算法.cpp`文件应该包含了这些实现逻辑,通过编译生成的`KMP算法.exe`可执行文件可以直接运行并测试。 4. **性能分析** KMP算法的时间复杂度为O(n + m),其中n为主串长度,m为子串长度。这是因为即使最坏情况下...

    KMP算法学习&总结

    KMP算法是字符串匹配问题的一个高效解决方案,通过部分匹配表减少了不必要的回溯操作,实现了线性时间复杂度的字符串匹配。理解部分匹配表的构建和利用是掌握KMP算法的关键。在实际编程中,KMP算法可以帮助我们更...

Global site tag (gtag.js) - Google Analytics