`
forchenyun
  • 浏览: 312280 次
  • 性别: Icon_minigender_1
  • 来自: 杭州
社区版块
存档分类
最新评论

Scale-up and Scale-out

阅读更多

转载自:http://www.cnblogs.com/spork/archive/2009/12/29/1634766.html

来自原小站,曾经迷糊过的东西,表上来,希望对正在迷糊或即将迷糊的人有帮助。

  谈到系统的可伸缩性,Scale-up(纵向扩展)和Scale-out(横向扩展)是两个常见的术语,对于初学者来说,很容易搞迷糊这两个概念,这里总结了一些把概念解释的比较清楚的内容。

  首先来段Wikipedia的,讲的很透彻了。

      Scale vertically (scale up)  

  To scale vertically (or scale up) means to add resources to a single node in a system, typically involving the addition of CPUs or memory to a single computer. Such vertical scaling of existing systems also enables them to leverage Virtualization technology more effectively, as it provides more resources for the hosted set of Operating system and Application modules to share.

  Taking advantage of such resources can also be called “scaling up”, such as expanding the number of Apache daemon processes currently running. 

  Scale horizontally (scale out)

  To scale horizontally (or scale out) means to add more nodes to a system, such as adding a new computer to a distributed software application. An example might be scaling out from one web server system to three.

  As computer prices drop and performance continues to increase, low cost “commodity” systems can be used for high performance computing applications such as seismic analysis and biotechnology workloads that could in the past only be handled by supercomputers. Hundreds of small computers may be configured in a cluster to obtain aggregate computing power which often exceeds that of single traditional RISC processor based scientific computers. This model has further been fueled by the availability of high performance interconnects such as Myrinet and InfiniBand technologies. It has also led to demand for features such as remote maintenance and batch processing management previously not available for “commodity” systems.

  The scale-out model has created an increased demand for shared data storage with very high I/O performance, especially where processing of large amounts of data is required, such as in seismic analysis. This has fueled the development of new storage technologies such as object storage devices.

------------------------------华丽的分割线---------------------------------------

  英语不好?没关系,给你准备了一份中文的,来自这里,他用养鱼来做了个形象的比喻。

  当你只有六七条鱼的时候, <script type="text/javascript"></script><script type="text/javascript"></script><script type="text/javascript"></script><script type="text/javascript"></script> 一个小型鱼缸就够了;可是过一段时间新生了三十多条小鱼,这个小缸显然不够大了。

  如果用Scale-up解决方案,那么你就需要去买一个大缸,把所有沙啊、水草啊、布景啊、加热棒、温度计都从小缸里拿出来,重新布置到大缸。这个工程可不简单哦,不是十分钟八分钟能搞得定的,尤其水草,纠在一起很难分开(不过这 <script type="text/javascript"></script><script type="text/javascript"></script><script type="text/javascript"></script><script type="text/javascript"></script> 跟迁移数据的工程复杂度比起来实在是毛毛雨啦,不值一提)。

  那么现在换个思路,用Scale-out方案,就相当于是你在这个小缸旁边接了一个同样的小缸,两个缸联通。鱼可以自动分散到两个缸,你也就省掉了上面提到的那一系列挪沙、水草、布景等的折腾了。

分享到:
评论

相关推荐

    SAP HANA System Replication Scale-Up - Performance Optimized Scenario

    SAP HANA系统复制有两种模式,即Scale-Out(横向扩展)和Scale-Up(纵向扩展)。Scale-Up是指在同一台服务器上增加硬件资源来增强性能和可靠性,而Scale-Out则是通过增加更多服务器来实现相同的目的。 本文档主要...

    计算机专业外文翻译(lucene相关)

    本文翻译了论文"Scale-up x Scale-out: A Case Study using Nutch/Lucene",介绍了计算机专业领域中关于Lucene相关的知识点,例如Scale-up vs Scale-out、Lucene搜索引擎、Nutch/Lucene、POWER5处理器、BladeCenter...

    01-高并发系统:它的通用设计方法是什么?_For_group_share1

    为了应对这种挑战,有三种主要的设计方法:Scale-up、Scale-out 和使用缓存。 1. Scale-up(纵向扩展):这种方法是通过升级单个服务器的硬件性能来提高系统处理能力。例如,增加处理器核心数量、提升内存容量或...

    阿里P9纯手打亿级高并发系统设计手册1.pdf

    Scale-up和Scale-out是两种不同的思路,Scale-up是通过购买性能更好的硬件来提升系统的并发处理能力,而Scale-out是通过将多个低性能的机器组成一个分布式集群来共同抵御高并发流量的冲击。 缓存是高并发系统设计...

    高并发系统设计.pdf

    首先,我们需要理解两种扩展策略:Scale-up和Scale-out。Scale-up,即纵向扩展,是指通过提升单个服务器的硬件配置,如增加CPU核心数或内存容量,来增强其处理能力。这种方法在系统初期或者并发量相对较小的情况下...

    EMC亚太区售前技术培训

    培训中讨论了Scale-up(向上扩展)和Scale-out(向外扩展)的概念。Scale-up通常意味着通过增加单个系统的资源(如CPU、内存或存储容量)来提升性能。而Scale-out则是通过增加更多相同或相似的节点(服务器)到集群...

    智能网络打造数据库平台高速路.pptx

    Scale-Up**:传统的Scale-Up策略是通过升级单一系统的组件来提升性能,而Scale-Out则是通过添加更多的系统节点来扩展能力。Scale-Out的优势在于能够提供持续可用性,适合关键业务应用,并且随着节点的增加,性能会...

    Reliability Analysis on Shifted and Random Declustering Block Layouts in Scale-out Storage Architectures

    “扩展存储架构”(Scale-out Storage Architectures)是一种通过增加更多存储单元来线性提升存储容量和处理能力的架构模式。它与传统的“扩展向上”(Scale-up)存储架构不同,后者是通过提升单个存储系统的处理能力和...

    数据分析大数据最佳配置建议.pdf

    首先,我们需要理解“Scale-Up”与“Scale-Out”这两种不同的架构策略。 Scale-Up,也称为纵向扩展,是指通过提升单个系统的性能,增加内存和处理器能力来处理更大负载。这种策略适合实时分析、高级分析以及数据...

    Dell EMC Isilon介绍.pdf

    8. 架构对比:与Scale-Up(纵向扩展)存储相比,Scale-Out(横向扩展)的Isilon集群提供了真正的线性可预见性。横向扩展架构意味着在增加存储容量的同时,性能也同步提升,这与Scale-Up架构在扩展容量后性能会下降...

    large scale machine learning with spark

    value applications at scale with ease and a personalized design, Book Description, Scaling out and deploying algorithms, interactions, and clustering are crucial steps in the process of optimizing any...

    aci_app_centric.pdf

    从传统的垂直扩展(Scale-Up)到现在的水平扩展(Scale-Out),数据中心与基础设施的演进体现了对高可用性、弹性、可扩展性、自动化和安全性的不断追求。 #### Scale-Up与Scale-Out - **Scale-Up**(垂直扩展): ...

    H13-621HCIP-Storage-CCSN.pdf

    4. OceanStor 18500/18800产品的4S扩展技术:OceanStor 18500/18800产品的4S扩展技术包括Scale-up、Scale-out和Scale-in,除此之外 Scale-down不属于OceanStor 18500/18800产品的4S扩展技术。 5. 同步远程复制处理...

    存储Storage中级考题.docx

    4. OceanStor 18500/18800 产品支持 Scale-up(向上扩展)、Scale-out(向外扩展)和 Scale-deep(深度扩展)技术。Scale-up 增加控制器的能力,Scale-out 提升性能和存储空间的线性增长,Scale-deep 实现与第三方...

    杨海朝_基于MySQL可扩展架构设计_更新

    1. **Scale-up vs Scale-out**:Scale-up指的是通过增强单台服务器的能力来提高系统的处理能力;而Scale-out则是通过增加更多的服务器来分散负载,提高系统的整体处理能力。 2. **后期改造成本高**:如果一开始没有...

    P9纯手打亿级高并发系统设计手册.pdf

    Scale-up 是一种提升系统性能的方法,通过购买性能更好的硬件来提升系统的并发处理能力。例如,目前系统 4 核 4G 每秒可以处理 200 次请求,那么如果要处理 400 次请求呢?很简单,我们把机器的硬件提升到 8 核 8G...

    Microservice-Architecture-Aligning-Principles-Practices-and-Culture.pdf

    for classic brick-and-mortar operations. While these companies’ products vary, we learned that the principles of speed and safety “at scale” were a common thread. They ix each worked to provide the...

    大数据现状与趋势分析.pdf

    在技术架构层面,Scale-Up和Scale-Out两种策略并存。Scale-Up适用于需要高性能、大内存、单一服务器的场景,如高级分析和数据驱动的负载;而Scale-Out则通过横向扩展实现更大规模的处理能力,适合于大数据分析和...

    基于Kubernetes的DevOps实践之路.pptx

    * K8s 调整中的 0 宕机:Cluster Scale-up、Scale-down、计划中的 Node 维护、非计划的 Node 宕机 六、配置改造 * 资源限制:Pod 的资源限制、应用本身也需要资源限制 * requests/limits * 跨 Node 的 HA * Out Of...

Global site tag (gtag.js) - Google Analytics