`

淘宝面试题:如何充分利用多核CPU,计算很大的List中所有整数的和

阅读更多
永久链接:http://flysnow.iteye.com/blog/711162
引用
前几天在网上看到一个淘宝的面试题:有一个很大的整数list,需要求这个list中所有整数的和,写一个可以充分利用多核CPU的代码,来计算结果。

一:分析题目
从题中可以看到“很大的List”以及“充分利用多核CPU”,这就已经充分告诉我们要采用多线程(任务)进行编写。具体怎么做呢?大概的思路就是分割List,每一小块的List采用一个线程(任务)进行计算其和,最后等待所有的线程(任务)都执行完后就可得到这个“很大的List”中所有整数的和。
二:具体分析和技术方案
既然我们已经决定采用多线程(任务),并且还要分割List,每一小块的List采用一个线程(任务)进行计算其和,那么我们必须要等待所有的线程(任务)完成之后才能得到正确的结果,那么怎么才能保证“等待所有的线程(任务)完成之后输出结果呢”?这就要靠java.util.concurrent包中的CyclicBarrier类了。它是一个同步辅助类,它允许一组线程(任务)互相等待,直到到达某个公共屏障点 (common barrier point)。在涉及一组固定大小的线程(任务)的程序中,这些线程(任务)必须不时地互相等待,此时 CyclicBarrier 很有用。简单的概括其适应场景就是:当一组线程(任务)并发的执行一件工作的时候,必须等待所有的线程(任务)都完成时才能进行下一个步骤。具体技术方案步骤如下:
  • 分割List,根据采用的线程(任务)数平均分配,即list.size()/threadCounts。
  • 定义一个记录“很大List”中所有整数和的变量sum,采用一个线程(任务)处理一个分割后的子List,计算子List中所有整数和(subSum),然后把和(subSum)累加到sum上。
  • 等待所有线程(任务)完成后输出总和(sum)的值。

示意图如下:

三:详细编码实现
代码中有很详细的注释,这里就不解释了。
/**
 * 计算List中所有整数的和<br>
 * 采用多线程,分割List计算
 * @author 飞雪无情
 * @since 2010-7-12
 */
public class CountListIntegerSum {
	private long sum;//存放整数的和
	private CyclicBarrier barrier;//障栅集合点(同步器)
	private List<Integer> list;//整数集合List
	private int threadCounts;//使用的线程数
	public CountListIntegerSum(List<Integer> list,int threadCounts) {
		this.list=list;
		this.threadCounts=threadCounts;
	}
	/**
	 * 获取List中所有整数的和
	 * @return
	 */
	public long getIntegerSum(){
		ExecutorService exec=Executors.newFixedThreadPool(threadCounts);
		int len=list.size()/threadCounts;//平均分割List
		//List中的数量没有线程数多(很少存在)
		if(len==0){
			threadCounts=list.size();//采用一个线程处理List中的一个元素
			len=list.size()/threadCounts;//重新平均分割List
		}
		barrier=new CyclicBarrier(threadCounts+1);
		for(int i=0;i<threadCounts;i++){
			//创建线程任务
			if(i==threadCounts-1){//最后一个线程承担剩下的所有元素的计算
				exec.execute(new SubIntegerSumTask(list.subList(i*len,list.size())));
			}else{
				exec.execute(new SubIntegerSumTask(list.subList(i*len, len*(i+1)>list.size()?list.size():len*(i+1))));
			}
		}
		try {
			barrier.await();//关键,使该线程在障栅处等待,直到所有的线程都到达障栅处
		} catch (InterruptedException e) {
			System.out.println(Thread.currentThread().getName()+":Interrupted");
		} catch (BrokenBarrierException e) {
			System.out.println(Thread.currentThread().getName()+":BrokenBarrier");
		}
		exec.shutdown();
		return sum;
	}
	/**
	 * 分割计算List整数和的线程任务
	 * @author lishuai
	 *
	 */
	public class SubIntegerSumTask implements Runnable{
		private List<Integer> subList;
		public SubIntegerSumTask(List<Integer> subList) {
			this.subList=subList;
		}
		public void run() {
			long subSum=0L;
			for (Integer i : subList) {
				subSum += i;
			}  
			synchronized(CountListIntegerSum.this){//在CountListIntegerSum对象上同步
				sum+=subSum;
			}
			try {
				barrier.await();//关键,使该线程在障栅处等待,直到所有的线程都到达障栅处
			} catch (InterruptedException e) {
				System.out.println(Thread.currentThread().getName()+":Interrupted");
			} catch (BrokenBarrierException e) {
				System.out.println(Thread.currentThread().getName()+":BrokenBarrier");
			}
			System.out.println("分配给线程:"+Thread.currentThread().getName()+"那一部分List的整数和为:\tSubSum:"+subSum);
		}
		
	}
	
}

有人可能对barrier=new CyclicBarrier(threadCounts+1);//创建的线程数和主线程main有点不解,不是采用的线程(任务)数是threadCounts个吗?怎么为CyclicBarrier设置的给定数量的线程参与者比我们要采用的线程数多一个呢?答案就是这个多出来的一个用于控制main主线程的,主线程也要等待,它要等待其他所有的线程完成才能输出sum值,这样才能保证sum值的正确性,如果main不等待的话,那么结果将是不可预料的。
/**
 * 计算List中所有整数的和测试类
 * @author 飞雪无情
 * @since 2010-7-12
 */
public class CountListIntegerSumMain {

	/**
	 * @param args
	 */
	public static void main(String[] args) {
		List<Integer> list = new ArrayList<Integer>();
		int threadCounts = 10;//采用的线程数
		//生成的List数据
		for (int i = 1; i <= 1000000; i++) {
			list.add(i);
		}
		CountListIntegerSum countListIntegerSum=new CountListIntegerSum(list,threadCounts);
		long sum=countListIntegerSum.getIntegerSum();
		System.out.println("List中所有整数的和为:"+sum);
	}

}

四:总结
本文主要通过一个淘宝的面试题为引子,介绍了并发的一点小知识,主要是介绍通过CyclicBarrier同步辅助器辅助多个并发任务共同完成一件工作。Java SE5的java.util.concurrent引入了大量的设计来解决并发问题,使用它们有助于我们编写更加简单而健壮的并发程序。

附mathfox提到的ExecutorService.invokeAll()方法的实现
这个不用自己控制等待,invokeAll执行给定的任务,当所有任务完成时,返回保持任务状态和结果的 Future 列表。sdh5724也说用了同步,性能不好。这个去掉了同步,根据返回结果的 Future 列表相加就得到总和了。
/**
 * 使用ExecutorService的invokeAll方法计算
 * @author 飞雪无情
 *
 */
public class CountSumWithCallable {

	/**
	 * @param args
	 * @throws InterruptedException 
	 * @throws ExecutionException 
	 */
	public static void main(String[] args) throws InterruptedException, ExecutionException {
		int threadCounts =19;//使用的线程数
		long sum=0;
		ExecutorService exec=Executors.newFixedThreadPool(threadCounts);
		List<Callable<Long>> callList=new ArrayList<Callable<Long>>();
		//生成很大的List
		List<Integer> list = new ArrayList<Integer>();
		for (int i = 0; i <= 1000000; i++) {
			list.add(i);
		}
		int len=list.size()/threadCounts;//平均分割List
		//List中的数量没有线程数多(很少存在)
		if(len==0){
			threadCounts=list.size();//采用一个线程处理List中的一个元素
			len=list.size()/threadCounts;//重新平均分割List
		}
		for(int i=0;i<threadCounts;i++){
			final List<Integer> subList;
			if(i==threadCounts-1){
				subList=list.subList(i*len,list.size());
			}else{
				subList=list.subList(i*len, len*(i+1)>list.size()?list.size():len*(i+1));
			}
			//采用匿名内部类实现
			callList.add(new Callable<Long>(){
				public Long call() throws Exception {
					long subSum=0L;
					for(Integer i:subList){
						subSum+=i;
					}
					System.out.println("分配给线程:"+Thread.currentThread().getName()+"那一部分List的整数和为:\tSubSum:"+subSum);
					return subSum;
				}
			});
		}
		List<Future<Long>> futureList=exec.invokeAll(callList);
		for(Future<Long> future:futureList){
			sum+=future.get();
		}
		exec.shutdown();
		System.out.println(sum);
	}

}

一些感言
这篇文章是昨天夜里11点多写好的,我当时是在网上看到了这个题目,就做了一下分析,写了实现代码,由于水平有限,难免有bug,这里感谢xifo等人的指正。这些帖子从发表到现在不到24小时的时间里创造了近9000的浏览次数,回复近100,这是我没有想到的,javaeye很久没这么疯狂过啦。这不是因为我的算法多好,而是因为这个题目、这篇帖子所体现出的意义。大家在看完这篇帖子后不光指正错误,还对方案进行了改进,关键是思考,人的思维是无穷的,只要我们善于发掘,善于思考,总能想出一些意想不到的方案。

从算法看,或者从题目场景对比代码实现来看,或许不是一篇很好的帖子,但是我说这篇帖子是很有意义的,方案也是在很多场景适用,有时我们可以假设这不是计算和,而是把数据写到一个个的小文件里,或者是分割进行网络传输等等,都有一定的启发,特别是回帖中的讨论。

单说一下回帖,我建议进来的人尽量看完所有的回帖,因为这里是很多人集思广益的精华,这里有他们分析问题,解决问题的思路,还有每个人提到的解决方案,想想为什么能用?为什么不能用?为什么好?为什么不好?


我一直相信:讨论是解决问题、提高水平的最佳方式!

  • 大小: 95.8 KB
分享到:
评论
65 楼 mercyblitz 2010-07-13  
pengpeng99bill 写道
这还是 多线程的问题 啊 还是没有解决多CPU处理的问,你的多线程怎么能保证是多个CPU在处理呢 ,可能还是一个CPU在处理啊 。以前看到过报道好像说是 java7 支持多CPU处理任务。 等待中。。。



可能,你误会了。Java 1.2之后,使用的操作系统内核线程,操作系统还是会利用多CPU的,也就是说和Java无关了。
我的《Java内存模型》正在写,其中起到了这些东西,如果有需要的话,可以关注一下。
64 楼 pengpeng99bill 2010-07-13  
这还是 多线程的问题 啊 还是没有解决多CPU处理的问,你的多线程怎么能保证是多个CPU在处理呢 ,可能还是一个CPU在处理啊 。以前看到过报道好像说是 java7 支持多CPU处理任务。 等待中。。。
63 楼 shuiguozheng 2010-07-13  
mapreduce 是什么东东啊!
62 楼 飞雪无情 2010-07-13  
dilantaya 写道
viei 写道
个人觉的你的这些算法啊,线程操作可能都是白忙活,或者说对这种问题处理的很浅,还不深入。算法挺简单的实现起来也有很多办法,多线程调度什么的也都是基本java知识。
我个人觉的的你要抓住问题的重点,要是用多cpu充分发挥多cpu的优势,首先要把任务分发,你只是起多个线程并不一定操作jvm和操作系统就会把任务分发到多cpu上执行,只有可能时间片切的更小,在执行这些任务。
所以这个过程中考虑的重点应该是
1:操作系统(开多个jvm,规定每个jvm进程运行在指定cpu上,肯定比一个进程下的多个线程只占用一个cpu对多cpu的压榨更好)
2:jvm调整(大数据量必然涉及到垃圾回收)
3:程序编写
上面这些弄好了,再深入一点就考虑,同步消耗问题
cpu多了,同步因素也是决定是否能把多cpu和性能转化率提高出来的一个重要环节。




怎么指定一个jvm对应单个cpu ,高手?


多谢你提出很好的意见。这个就更深入了,我这方便还不太知道,我测试机上只有一个CPU,没法指定,所以只能这么做。你说的方式能不能大概的用代码表示一下,伪代码也行。
61 楼 飞雪无情 2010-07-13  
captmjc 写道
来不及看所有的恢复,但是提醒大家注意,在注意算法的同时,注意越界的问题。

两个int相加,都可能越界,何况“很大的List”。所以实战的话,可能需要BigInteger。

而BigInteger的话,更体现了线程的优势。N个较小的BI相加,比一个巨大的BI参与的计算快多了。

同意你说的越界问题,不过采用BigInteger我倒没试过,因为它的加减乘除等操作是程序实现的,不一定比(+-*/)操作符快吧。
60 楼 amigo 2010-07-13  
dilantaya 写道
sunwenran 写道
赞一个。

问题是我用你的例子比较直接加
        long noCurrentSum=0L;  
        for(Integer i:list){  
            noCurrentSum+=i;  
        } 
发现时间差不多。而且有时候直接加更快。纠结了。。我的是双核。


可能是你给的数据量还不够大


调整到50000000
for (int i = 1; i <= 50000000; i++) {
list.add(i);
}


单线程时间比并发更快
59 楼 mercyblitz 2010-07-13  
ExecutorCompletionService和Executor配合就行了。

CyclicBarrier和CountDownLatch和BlockingQueue提供了相同的语义,条件阻塞,说白了还是AbstractQuquedSynchronizor的实现。
58 楼 pudong 2010-07-13  
阿里巴巴也问过我类似的问题
57 楼 dilantaya 2010-07-13  
viei 写道
个人觉的你的这些算法啊,线程操作可能都是白忙活,或者说对这种问题处理的很浅,还不深入。算法挺简单的实现起来也有很多办法,多线程调度什么的也都是基本java知识。
我个人觉的的你要抓住问题的重点,要是用多cpu充分发挥多cpu的优势,首先要把任务分发,你只是起多个线程并不一定操作jvm和操作系统就会把任务分发到多cpu上执行,只有可能时间片切的更小,在执行这些任务。
所以这个过程中考虑的重点应该是
1:操作系统(开多个jvm,规定每个jvm进程运行在指定cpu上,肯定比一个进程下的多个线程只占用一个cpu对多cpu的压榨更好)
2:jvm调整(大数据量必然涉及到垃圾回收)
3:程序编写
上面这些弄好了,再深入一点就考虑,同步消耗问题
cpu多了,同步因素也是决定是否能把多cpu和性能转化率提高出来的一个重要环节。




怎么指定一个jvm对应单个cpu ,高手?
56 楼 dilantaya 2010-07-13  
captmjc 写道
来不及看所有的恢复,但是提醒大家注意,在注意算法的同时,注意越界的问题。

两个int相加,都可能越界,何况“很大的List”。所以实战的话,可能需要BigInteger。

而BigInteger的话,更体现了线程的优势。N个较小的BI相加,比一个巨大的BI参与的计算快多了。




同意!
55 楼 guanliScott 2010-07-13  
melin 写道
sdh5724 写道
性能不好, 用了同步。 可以分割同步。

每个线程存放自己相加的结果,计算完以后,再相加各个线程统计的结果,避免了同步。



这个严重同意。用不到那么大的synchronize.
54 楼 viei 2010-07-13  
个人觉的你的这些算法啊,线程操作可能都是白忙活,或者说对这种问题处理的很浅,还不深入。算法挺简单的实现起来也有很多办法,多线程调度什么的也都是基本java知识。
我个人觉的的你要抓住问题的重点,要是用多cpu充分发挥多cpu的优势,首先要把任务分发,你只是起多个线程并不一定操作jvm和操作系统就会把任务分发到多cpu上执行,只有可能时间片切的更小,在执行这些任务。
所以这个过程中考虑的重点应该是
1:操作系统(开多个jvm,规定每个jvm进程运行在指定cpu上,肯定比一个进程下的多个线程只占用一个cpu对多cpu的压榨更好)
2:jvm调整(大数据量必然涉及到垃圾回收)
3:程序编写
上面这些弄好了,再深入一点就考虑,同步消耗问题
cpu多了,同步因素也是决定是否能把多cpu和性能转化率提高出来的一个重要环节。
53 楼 captmjc 2010-07-13  
来不及看所有的恢复,但是提醒大家注意,在注意算法的同时,注意越界的问题。

两个int相加,都可能越界,何况“很大的List”。所以实战的话,可能需要BigInteger。

而BigInteger的话,更体现了线程的优势。N个较小的BI相加,比一个巨大的BI参与的计算快多了。
52 楼 tamsiuloong 2010-07-13  
真的很讨厌je拷贝代码时,前有行数号。讨厌之极 啊
51 楼 飞雪无情 2010-07-13  
melin 写道
sdh5724 写道
性能不好, 用了同步。 可以分割同步。

每个线程存放自己相加的结果,计算完以后,再相加各个线程统计的结果,避免了同步。

哦,原来这样,那这样就需要Callable和Future了。
50 楼 wujiazhao88 2010-07-13  
我也是先了一个,不需要同步啊,用一个侦听者线程来启动所有即可
49 楼 melin 2010-07-13  
sdh5724 写道
性能不好, 用了同步。 可以分割同步。

每个线程存放自己相加的结果,计算完以后,再相加各个线程统计的结果,避免了同步。
48 楼 dilantaya 2010-07-13  
zhao103804 写道
ray_linn 写道
            List<int> collection = new List<int>();
            ...
            return collection.AsParallel<int>().Sum();


这种东西在C#里根本不值得去浪费脑细胞。


我觉得C#里什么都封装好了,虽然说你用一句话可以实现,但是你只限于会用,并不知道它的实现机制
程序写的再熟练也没有用,关键是思想


ps:不好意思点错了,发了两次



其实封装好也是好事,但是机制原理不管在宏观还是微观都是有指导意义的
47 楼 zhao103804 2010-07-13  
ray_linn 写道
            List<int> collection = new List<int>();
            ...
            return collection.AsParallel<int>().Sum();


这种东西在C#里根本不值得去浪费脑细胞。


我觉得C#里什么都封装好了,虽然说你用一句话可以实现,但是你只限于会用,并不知道它的实现机制
程序写的再熟练也没有用,关键是思想


ps:不好意思点错了,发了两次
46 楼 zhao103804 2010-07-13  
ray_linn 写道
            List<int> collection = new List<int>();
            ...
            return collection.AsParallel<int>().Sum();


这种东西在C#里根本不值得去浪费脑细胞。


我觉得C#里什么都封装好了,虽然说你用一句话可以实现,但是你只限于会用,并不知道它的实现机制

相关推荐

    若邻网Python工程师面试题

    2. **丰富的库支持**:Python 拥有庞大的标准库和第三方库,几乎涵盖了所有应用领域,如网络编程、图形用户界面、科学计算等。 3. **跨平台性**:Python 可以运行在多种操作系统上,如 Windows、Linux 和 macOS 等。...

    delphi面试题.pdf

    ### Delphi 面试题知识点解析 #### 一、基础知识题解析 1. **Delphi 是什么?它主要应用于什么领域?** - **Delphi** 是一种基于 Object Pascal 的集成开发环境(IDE),主要用于 Windows 平台上的应用程序开发。...

    110道python面试题

    - **作用**: 由于GIL的存在,在多线程环境下,即使CPU有多核也无法充分利用多核的优势,因为同一进程中只有一个线程可以执行Python字节码。 - **影响**: 对于I/O密集型的应用,GIL的影响较小,但对于CPU密集型任务...

    python面试题及答案.txt

    根据给定文件的信息,我们可以总结出一系列与Python相关的面试题及其答案。这些问题涵盖了Python的基本语法、数据类型、高级特性等多个方面。接下来,我们将详细解析这些知识点。 ### 模块和包的区别 在Python中,...

    Python面试常见问题汇总集锦(含爬虫工程师面试考点)

    Python也提供了多线程和多进程支持,以便更好地利用多核处理器。 6. 全局解释器锁(GIL) Python中的全局解释器锁(GIL)是为了简化内存管理而设计的,它限制了同一时刻只有一个线程可以执行Python字节码。这意味着...

    搞定这套Python爬虫面试题(面试会so easy)

    - 利用多进程可以充分利用多核CPU资源。 7. **深拷贝与浅拷贝** - 深拷贝创建一个全新的对象,而浅拷贝仅复制对象的引用。 - 当原对象被修改时,深拷贝的对象不受影响,而浅拷贝的对象可能会受到影响。 8. **is...

    python面试题

    ### Python面试题详解 #### 1. Python的函数参数传递 在Python中,函数参数的传递遵循“传值”而非“传引用”的原则。当传递不可变数据类型(如整数、字符串等)时,实际上是将该数据类型的值复制一份传递给函数;...

    java面试讲题汇总-word可打印版

    51. Java 8的ConcurrentHashMap弃用分段锁是因为分段锁在多核CPU环境下性能瓶颈,改为使用CAS和Node链表实现。 52. ConcurrentHashMap使用synchronized而非ReentrantLock是因为减少锁粒度,提高并发性能。 53. ...

    Redis面试必会的题目

    通过在同一台机器上启动多个Redis实例,可以充分利用多核资源。 3. **Redis的性能优势**: - **速度**:由于数据存储在内存中,Redis的读写速度非常快,接近O(1)的时间复杂度。 - **丰富的数据类型**:支持多种...

    Python面试题

    这限制了多核CPU下的并行计算能力,但在IO密集型任务中,多线程仍然能提高效率。 - 使用`threading`库可以创建线程,但需要注意GIL的存在可能导致多线程不如预期中的并行。 以上是Python面试中常见的知识点,理解...

Global site tag (gtag.js) - Google Analytics