`

OOSE方法第二个项目:基于Delaunay三角剖分的基站位置识别工具

 
阅读更多
基于Delaunay图形识别方法的移动网位置区识别工具

1)2月8号完成第一版本的原始需求说明书。《插花站点需求分析书》

2) 2014年2月10号报完成正式版本  《基于Delaunay图形识别方法的移动网位置区识别工具0210》


3) 2014 年2月12日完成更新版本,完善领域对象模型。

4)2月18日,提供数据样例。 组织测试。







4) 2 月13日完成Delaunay三角剖分算法的实现
同时完成手工验证,确认算法实现的正确性。




5) 遇到一个难题
由于画图组件使用的是坐标系的形式,x轴y轴像素坐标(pixel coordinates)的方式,所以使用的是integer,请参考以下文章
http://stackoverflow.com/questions/15690579/make-oval-rectangle-using-float-double-values


如果是经纬度,需要有一个坐标转换算法,可以参考以下代码:
http://sf-library.googlecode.com/svn-history/r16/trunk/SF/src/com/studiofortress/sf/graphics/GraphicsGL.java

6) 2月27号完成了整个组件集成和测试。相关的设计文档和MDL文件见附件。



7)3月3号完成QC材料

8) QC材料最后定稿,2014年3月7号

9) 创新材料定稿   2014年3月10号

10) 创新材料完善    2014年3月14号





11) 完成各类创新资料的汇总


Delaunay三角剖分算
http://baike.baidu.com/link?url=r054C5y_my3hIU55Uw76Cmn_i_SNPti_JLwkFqvAYBs31PZ69iAUbhNFPAXaNPIURk9Nkl5-CpJbI44UHYzLN_#refIndex_3_1691145


点集的三角剖分(Triangulation),对数值分析(比如有限元分析)以及图形学来说,都是极为重要的一项预处理技术。尤其是Delaunay三角剖分,由于其独特性,关于点集的很多种几何图都和Delaunay三角剖分相关,如Voronoi图,EMST树,Gabriel图等。Delaunay三角剖分有最大化最小角,“最接近于规则化的“的三角网和唯一性(任意四点不能共圆)两个特点。
目录1定义
2准则特性
3计算方法
1定义编辑【定义】三角剖分[1]:假设V是二维实数域上的有限点集,边e是由点集中的点作为端点构成的封闭线段, E为e的集合。那么该点集V的一个三角剖分T=(V,E)是一个平面图G,该平面图满足条件:
1.除了端点,平面图中的边不包含点集中的任何点。
2.没有相交边。
3.平面图中所有的面都是三角面,且所有三角面的合集是散点集V的凸包。
在实际中运用的最多的三角剖分是Delaunay三角剖分,它是一种特殊的三角剖分。先从Delaunay边说起:
【定义】Delaunay边:假设E中的一条边e(两个端点为a,b),e若满足下列条件,则称之为Delaunay边:存在一个圆经过a,b两点,圆内(注意是圆内,圆上最多三点共圆)不含点集V中任何其他的点,这一特性又称空圆特性。
【定义】Delaunay三角剖分:如果点集V的一个三角剖分T只包含Delaunay边,那么该三角剖分称为Delaunay三角剖分。
优化处理:
理论上为了构造Delaunay三角网[2],Lawson提出的局部优化过程LOP(Local Optimization Procedure),一般三角网经过LOP处理,即可确保成为Delaunay三角网,其基本做法如下所示:
1.将两个具有共同边的三角形合成一个多边形。
2.以最大空圆准则作检查,看其第四个顶点是否在三角形的外接圆之内。
3.如果在,修正对角线即将对角线对调,即完成局部优化过程的处理。
LOP处理过程如下图所示:Delaunay剖分的算法
Delaunay剖分是一种三角剖分的标准,实现它有多种算法。
2准则特性编辑准则:
要满足Delaunay三角剖分的定义,必须符合两个重要的准则:
1、空圆特性:Delaunay三角网是唯一的(任意四点不能共圆),在Delaunay三角形网中任一三角形的外接圆范围内不会有其它点存在。如下图所示:
2、最大化最小角特性:在散点集可能形成的三角剖分中,Delaunay三角剖分所形成的三角形的最小角最大。从这个意义上讲,Delaunay三角网是“最接近于规则化的“的三角网。具体的说是指在两个相邻的三角形构成凸四边形的对角线,在相互交换后,六个内角的最小角不再增大。如下图所示:
特性:
以下是Delaunay剖分所具备的优异特性:
1.最接近:以最近的三点形成三角形,且各线段(三角形的边)皆不相交。
2.唯一性:不论从区域何处开始构建,最终都将得到一致的结果。
3.最优性:任意两个相邻三角形形成的凸四边形的对角线如果可以互换的话,那么两个三角形六个内角中最小的角度不会变大。
4.最规则:如果将三角网中的每个三角形的最小角进行升序排列,则Delaunay三角网的排列得到的数值最大。
5.区域性:新增、删除、移动某一个顶点时只会影响临近的三角形。
6.具有凸多边形的外壳:三角网最外层的边界形成一个凸多边形的外壳。
3计算方法编辑逐点插入的Lawson算法[3]是Lawson在1977年提出的,该算法思路简单,易于编程实现。基本原理为:首先建立一个大的三角形或多边形,把所有数据点包围起来,向其中插入一点,该点与包含它的三角形三个顶点相连,形成三个新的三角形,然后逐个对它们进行空外接圆检测,同时用Lawson设计的局部优化过程LOP进行优化,即通过交换对角线的方法来保证所形成的三角网为Delaunay三角网。
上述基于散点的构网算法理论严密、唯一性好,网格满足空圆特性,较为理想。由其逐点插入的构网过程可知,遇到非Delaunay边时,通过删除调整,可以构造形成新的Delaunay边。在完成构网后,增加新点时,无需对所有的点进行重新构网,只需对新点的影响三角形范围进行局部联网,且局部联网的方法简单易行。同样,点的删除、移动也可快速动态地进行。但在实际应用当中,这种构网算法当点集较大时构网速度也较慢,如果点集范围是非凸区域或者存在内环,则会产生非法三角形。
如左图所示:当离散点集构成圆环时,Lawson算法产生的非法三角形  离散点集合
  正确的三角剖分
  Lawson算法产生的三角剖分
2.2.Bowyer-Watson算法
Lawson算法(Lawson???)的基本步骤是:
1、构造一个超级三角形,包含所有散点,放入三角形链表。
2、将点集中的散点依次插入,在三角形链表中找出外接圆包含插入点的三角形(称为该点的影响三角形),删除影响三角形的公共边,将插入点同影响三角形的全部顶点连接起来,完成一个点在Delaunay三角形链表中的插入。
3、根据优化准则对局部新形成的三角形优化。将形成的三角形放入Delaunay三角形链表。
4、循环执行上述第2步,直到所有散点插入完毕。
这一算法的关键的第2步图示如下:
词条图册更多图册◆
词条图片(8张)

1/1

参考资料

2.3  专利汇总
  • 大小: 73.5 KB
  • 大小: 30 KB
  • 大小: 139 KB
  • 大小: 174.4 KB
  • 大小: 54 KB
  • 大小: 90.7 KB
  • 大小: 102 KB
分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics