`
flynewton
  • 浏览: 62480 次
  • 性别: Icon_minigender_1
  • 来自: 杭州
社区版块
存档分类
最新评论

memcached全面剖析–3.memcached的删除机制和发展方向

阅读更多

转自:http://my.oschina.net/flynewton/blog/8998

 

关键字: memcached , 缓存 , 删除机制

版权声明:可以任意转载,但转载时必须标明原作者charlee、原始链接http://tech.idv2.com/2008/07/16/memcached-003/以及本声明。

 

下面是《memcached全面剖析》的第三部分。

memcached是缓存,所以数据不会永久保存在服务器上,这是向系统中引入memcached的前提。 本次介绍memcached的数据删除机制,以及memcached的最新发展方向——二进制协议(Binary Protocol) 和外部引擎支持。

memcached在数据删除方面有效利用资源

数据不会真正从memcached中消失

上次介绍过, memcached不会释放已分配的内存。记录超时后,客户端就无法再看见该记录(invisible,透明), 其存储空间即可重复使用。

Lazy Expiration

memcached内部不会监视记录是否过期,而是在get时查看记录的时间戳,检查记录是否过期。 这种技术被称为lazy(惰性)expiration。因此,memcached不会在过期监视上耗费CPU时间。

LRU:从缓存中有效删除数据的原理

memcached会优先使用已超时的记录的空间,但即使如此,也会发生追加新记录时空间不足的情况, 此时就要使用名为 Least Recently Used(LRU)机制来分配空间。 顾名思义,这是删除“最近最少使用”的记录的机制。 因此,当memcached的内存空间不足时(无法从slab class 获取到新的空间时),就从最近未被使用的记录中搜索,并将其空间分配给新的记录。 从缓存的实用角度来看,该模型十分理想。

不过,有些情况下LRU机制反倒会造成麻烦。memcached启动时通过“-M”参数可以禁止LRU,如下所示:

$ memcached -M -m 1024

启动时必须注意的是,小写的“-m”选项是用来指定最大内存大小的。不指定具体数值则使用默认值64MB。

指定“-M”参数启动后,内存用尽时memcached会返回错误。 话说回来,memcached毕竟不是存储器,而是缓存,所以推荐使用LRU。

memcached的最新发展方向

memcached的roadmap上有两个大的目标。一个是二进制协议的策划和实现,另一个是外部引擎的加载功能。

关于二进制协议

使用二进制协议的理由是它不需要文本协议的解析处理,使得原本高速的memcached的性能更上一层楼, 还能减少文本协议的漏洞。目前已大部分实现,开发用的代码库中已包含了该功能。 memcached的下载页面上有代码库的链接。

二进制协议的格式

协议的包为24字节的帧,其后面是键和无结构数据(Unstructured Data)。 实际的格式如下(引自协议文档):

 Byte/     0       |       1       |       2       |       3       |   
    /              |               |               |               |   
   |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
   +---------------+---------------+---------------+---------------+
  0/ HEADER                                                        /   
   /                                                               /   
   /                                                               /   
   /                                                               /   
   +---------------+---------------+---------------+---------------+
 24/ COMMAND-SPECIFIC EXTRAS (as needed)                           /   
  +/  (note length in th extras length header field)               /   
   +---------------+---------------+---------------+---------------+
  m/ Key (as needed)                                               /   
  +/  (note length in key length header field)                     /   
   +---------------+---------------+---------------+---------------+
  n/ Value (as needed)                                             /   
  +/  (note length is total body length header field, minus        /   
  +/   sum of the extras and key length body fields)               /   
   +---------------+---------------+---------------+---------------+
  Total 24 bytes

如上所示,包格式十分简单。需要注意的是,占据了16字节的头部(HEADER)分为 请求头(Request Header)和响应头(Response Header)两种。 头部中包含了表示包的有效性的Magic字节、命令种类、键长度、值长度等信息,格式如下:

Request Header

 Byte/     0       |       1       |       2       |       3       |
    /              |               |               |               |
   |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
   +---------------+---------------+---------------+---------------+
  0| Magic         | Opcode        | Key length                    |
   +---------------+---------------+---------------+---------------+
  4| Extras length | Data type     | Reserved                      |
   +---------------+---------------+---------------+---------------+
  8| Total body length                                             |
   +---------------+---------------+---------------+---------------+
 12| Opaque                                                        |
   +---------------+---------------+---------------+---------------+
 16| CAS                                                           |
   |                                                               |
   +---------------+---------------+---------------+---------------+
Response Header

 Byte/     0       |       1       |       2       |       3       |
    /              |               |               |               |
   |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
   +---------------+---------------+---------------+---------------+
  0| Magic         | Opcode        | Key Length                    |
   +---------------+---------------+---------------+---------------+
  4| Extras length | Data type     | Status                        |
   +---------------+---------------+---------------+---------------+
  8| Total body length                                             |
   +---------------+---------------+---------------+---------------+
 12| Opaque                                                        |
   +---------------+---------------+---------------+---------------+
 16| CAS                                                           |
   |                                                               |
   +---------------+---------------+---------------+---------------+

如希望了解各个部分的详细内容,可以checkout出memcached的二进制协议的代码树, 参考其中的docs文件夹中的protocol_binary.txt文档。

HEADER中引人注目的地方

看到HEADER格式后我的感想是,键的上限太大了!现在的memcached规格中,键长度最大为250字节, 但二进制协议中键的大小用2字节表示。因此,理论上最大可使用65536字节(216)长的键。 尽管250字节以上的键并不会太常用,二进制协议发布之后就可以使用巨大的键了。

二进制协议从下一版本1.3系列开始支持。

外部引擎支持

我去年曾经试验性地将memcached的存储层改造成了可扩展的(pluggable)。

MySQL的Brian Aker看到这个改造之后,就将代码发到了memcached的邮件列表。 memcached的开发者也十分感兴趣,就放到了roadmap中。现在由我和 memcached的开发者Trond Norbye协同开发(规格设计、实现和测试)。 和国外协同开发时时差是个大问题,但抱着相同的愿景, 最后终于可以将可扩展架构的原型公布了。 代码库可以从memcached的下载页面 上访问。

外部引擎支持的必要性

世界上有许多memcached的派生软件,其理由是希望永久保存数据、实现数据冗余等, 即使牺牲一些性能也在所不惜。我在开发memcached之前,在mixi的研发部也曾经 考虑过重新发明memcached。

外部引擎的加载机制能封装memcached的网络功能、事件处理等复杂的处理。 因此,现阶段通过强制手段或重新设计等方式使memcached和存储引擎合作的困难 就会烟消云散,尝试各种引擎就会变得轻而易举了。

简单API设计的成功的关键

该项目中我们最重视的是API设计。函数过多,会使引擎开发者感到麻烦; 过于复杂,实现引擎的门槛就会过高。因此,最初版本的接口函数只有13个。 具体内容限于篇幅,这里就省略了,仅说明一下引擎应当完成的操作:

  • 引擎信息(版本等)
  • 引擎初始化
  • 引擎关闭
  • 引擎的统计信息
  • 在容量方面,测试给定记录能否保存
  • 为item(记录)结构分配内存
  • 释放item(记录)的内存
  • 删除记录
  • 保存记录
  • 回收记录
  • 更新记录的时间戳
  • 数学运算处理
  • 数据的flush

对详细规格有兴趣的读者,可以checkout engine项目的代码,阅读器中的engine.h。

重新审视现在的体系

memcached支持外部存储的难点是,网络和事件处理相关的代码(核心服务器)与 内存存储的代码紧密关联。这种现象也称为tightly coupled(紧密耦合)。 必须将内存存储的代码从核心服务器中独立出来,才能灵活地支持外部引擎。 因此,基于我们设计的API,memcached被重构成下面的样子:

重构之后,我们与1.2.5版、二进制协议支持版等进行了性能对比,证实了它不会造成性能影响。

在考虑如何支持外部引擎加载时,让memcached进行并行控制(concurrency control)的方案是最为容易的, 但是对于引擎而言,并行控制正是性能的真谛,因此我们采用了将多线程支持完全交给引擎的设计方案。

以后的改进,会使得memcached的应用范围更为广泛。

总结

本次介绍了memcached的超时原理、内部如何删除数据等,在此之上又介绍了二进制协议和 外部引擎支持等memcached的最新发展方向。这些功能要到1.3版才会支持,敬请期待!

 

 

分享到:
评论

相关推荐

    memcached全面剖析–4. memcached的分布式算法.txt

    memcached全面剖析–4. memcached的分布式算法.txt

    memcached全面剖析.zip

    memcached全面剖析, 密码 1234!... memcached的删除机制和发展方向 memcached全面剖析–4. memcached的分布式算法 memcached全面剖析–5. memcached的应用和兼容程序 可关注公众号:Java与大数据进阶

    memcached-1.5.11.tar.gz

    《深入理解Memcached:基于1.5.11版本的剖析》 Memcached,一个高性能、分布式的内存对象缓存系统,广泛应用于Web应用中,用于减轻数据库的负载,提高数据访问速度。本文将深入探讨Memcached的1.5.11版本,解析其...

    memcached全面剖析

    目前为止我找到的关于memcached(分布式缓存)最详细的中文资料。

    memcached全面剖析.pdf

    memcached的删除机制包括Lazy Expiration和LRU(Least Recently Used,最近最少使用算法)。Lazy Expiration意味着memcached在内部记录每个数据项的过期时间,但不会主动去检查和删除过期的数据项,只有在访问过期的...

    MemCached 全面剖析 memcached.pdf(中文)

    ### MemCached 全面剖析 #### 一、MemCached ...以上内容覆盖了 MemCached 的基本概念、安装使用、内存管理、删除机制、分布式算法以及实际应用场景等方面的知识点,为深入理解和掌握 MemCached 提供了全面的信息。

    memcached全面剖析–4.memcached的分布式算法

    正如第1次中介绍的那样,memcached虽然称为“分布式”缓存服务器,但服务器端并没有“分布式”功能。服务器端仅包括第2次、第3次前坂介绍的内存存储功能,其实现非常简单。至于memcached的分布式,则是完全由客户端...

    memcached全面剖析–2.理解memcached的内存存储

    最近的memcached默认情况下采用了名为SlabAllocator的机制分配、管理内存。 在该机制出现以前,内存的分配是通过对所有记录简单地进行malloc和free来进行的。但是,这种方式会导致内存碎片,加重操作系统内存管理器...

    Memcached源码剖析笔记.docx

    Memcached 的内部工作机制主要包括 Hash 机制、Slab 机制和 LRU 机制等。Hash 机制用于将键映射到特定的 Slab 中,Slab 机制用于管理内存的分配和释放,LRU 机制用于管理缓存的淘汰。 11. Memcached 基本的数据结构...

    hibernate-memcached-1.1.0-sources.zip

    《Hibernate与Memcached整合详解——基于hibernate-memcached-1.1.0源码分析》 在当今的Web开发领域,数据持久化是一个必不可少的环节,而Hibernate作为Java领域广泛使用的对象关系映射(ORM)框架,极大地简化了...

    danga memcached使用

    **标题:“danga memcached使用”** memcached是一款高性能、分布式内存对象缓存系统,它广泛应用于Web应用中,用于减轻数据库的负载,通过在内存中缓存数据和对象来减少读取数据库的次数。Danga是memcached的原始...

Global site tag (gtag.js) - Google Analytics