- 浏览: 59030 次
- 性别:
- 来自: 上海
文章分类
最新评论
copy:http://www.cnblogs.com/wuyisky/archive/2010/02/24/oracle_over.html
分析函数语法:
FUNCTION_NAME(<argument>,<argument>...)
OVER
(<Partition-Clause><Order-by-Clause><Windowing Clause>)
例:
sum(sal) over (partition by deptno order by ename) new_alias
sum就是函数名
(sal)是分析函数的参数,每个函数有0~3个参数,参数可以是表达式,例如:sum(sal+comm)
over 是一个关键字,用于标识分析函数,否则查询分析器不能区别sum()聚集函数和sum()分析函数
partition by deptno 是可选的分区子句,如果不存在任何分区子句,则全部的结果集可看作一个单一的大区
order by ename 是可选的order by 子句,有些函数需要它,有些则不需要.依靠已排序数据的那些函数,如:用于访问结果集中前一行和后一行的LAG和LEAD,必须使用,其它函数,如AVG,则不需要.在使用了任何排序的开窗函数时,该子句是强制性的,它指定了在计算分析函数时一组内的数据是如何排序的.
copy:http://fxz-2008.iteye.com/blog/1007986
超级牛皮的oracle的分析函数over(Partition by...) 及开窗函数
over(Partition by...) 一个超级牛皮的ORACLE特有函数。
最近工作中才接触到这个功能强大而灵活的函数。
oracle的分析函数over 及开窗函数
一:分析函数over
Oracle从8.1.6开始提供分析函数,分析函数用于计算基于组的某种聚合值,它和聚合函数的不同之处是
对于每个组返回多行,而聚合函数对于每个组只返回一行。
下面通过几个例子来说明其应用。
1:统计某商店的营业额。
date sale
1 20
2 15
3 14
4 18
5 30
规则:按天统计:每天都统计前面几天的总额
得到的结果:
DATE SALE SUM
----- -------- ------
1 20 20 --1天
2 15 35 --1天+2天
3 14 49 --1天+2天+3天
4 18 67 .
5 30 97 .
2:统计各班成绩第一名的同学信息
NAME CLASS S
----- ----- ----------------------
fda 1 80
ffd 1 78
dss 1 95
cfe 2 74
gds 2 92
gf 3 99
ddd 3 99
adf 3 45
asdf 3 55
3dd 3 78
通过:
--
select * from
(
select name,class,s,rank()over(partition by class order by s desc) mm from t2
)
where mm=1
--
得到结果:
NAME CLASS S MM
----- ----- ---------------------- ----------------------
dss 1 95 1
gds 2 92 1
gf 3 99 1
ddd 3 99 1
注意:
1.在求第一名成绩的时候,不能用row_number(),因为如果同班有两个并列第一,row_number()只返回一个结果
2.rank()和dense_rank()的区别是:
--rank()是跳跃排序,有两个第二名时接下来就是第四名
--dense_rank()l是连续排序,有两个第二名时仍然跟着第三名
3.分类统计 (并显示信息)
A B C
-- -- ----------------------
m a 2
n a 3
m a 2
n b 2
n b 1
x b 3
x b 2
x b 4
h b 3
select a,c,sum(c)over(partition by a) from t2
得到结果:
A B C SUM(C)OVER(PARTITIONBYA)
-- -- ------- ------------------------
h b 3 3
m a 2 4
m a 2 4
n a 3 6
n b 2 6
n b 1 6
x b 3 9
x b 2 9
x b 4 9
如果用sum,group by 则只能得到
A SUM(C)
-- ----------------------
h 3
m 4
n 6
x 9
无法得到B列值
=====
select * from test
数据:
A B C
1 1 1
1 2 2
1 3 3
2 2 5
3 4 6
---将B栏位值相同的对应的C 栏位值加总
select a,b,c, SUM(C) OVER (PARTITION BY B) C_Sum
from test
A B C C_SUM
1 1 1 1
1 2 2 7
2 2 5 7
1 3 3 3
3 4 6 6
---如果不需要已某个栏位的值分割,那就要用 null
eg: 就是将C的栏位值summary 放在每行后面
select a,b,c, SUM(C) OVER (PARTITION BY null) C_Sum
from test
A B C C_SUM
1 1 1 17
1 2 2 17
1 3 3 17
2 2 5 17
3 4 6 17
求个人工资占部门工资的百分比
SQL> select * from salary;
NAME DEPT SAL
---------- ---- -----
a 10 2000
b 10 3000
c 10 5000
d 20 4000
SQL> select name,dept,sal,sal*100/sum(sal) over(partition by dept) percent from salary;
NAME DEPT SAL PERCENT
---------- ---- ----- ----------
a 10 2000 20
b 10 3000 30
c 10 5000 50
d 20 4000 100
二:开窗函数
开窗函数指定了分析函数工作的数据窗口大小,这个数据窗口大小可能会随着行的变化而变化,举例如下:
1:
over(order by salary) 按照salary排序进行累计,order by是个默认的开窗函数
over(partition by deptno)按照部门分区
2:
over(order by salary range between 5 preceding and 5 following)
每行对应的数据窗口是之前行幅度值不超过5,之后行幅度值不超过5
例如:对于以下列
aa
1
2
2
2
3
4
5
6
7
9
sum(aa)over(order by aa range between 2 preceding and 2 following)
得出的结果是
AA SUM
---------------------- -------------------------------------------------------
1 10
2 14
2 14
2 14
3 18
4 18
5 22
6 18
7 22
9 9
就是说,对于aa=5的一行 ,sum为 5-1<=aa<=5+2 的和
对于aa=2来说 ,sum=1+2+2+2+3+4=14 ;
又如 对于aa=9 ,9-1<=aa<=9+2 只有9一个数,所以sum=9 ;
3:其它:
over(order by salary rows between 2 preceding and 4 following)
每行对应的数据窗口是之前2行,之后4行
4:下面三条语句等效:
over(order by salary rows between unbounded preceding and unbounded following)
每行对应的数据窗口是从第一行到最后一行,等效:
over(order by salary range between unbounded preceding and unbounded following)
等效
over(partition by null)
常用的分析函数如下所列:
row_number() over(partition by ... order by ...)
rank() over(partition by ... order by ...)
dense_rank() over(partition by ... order by ...)
count() over(partition by ... order by ...)
max() over(partition by ... order by ...)
min() over(partition by ... order by ...)
sum() over(partition by ... order by ...)
avg() over(partition by ... order by ...)
first_value() over(partition by ... order by ...)
last_value() over(partition by ... order by ...)
lag() over(partition by ... order by ...)
lead() over(partition by ... order by ...)
示例
SQL> select type,qty from test;
TYPE QTY
---------- ----------
1 6
2 9
SQL> select type,qty,to_char(row_number() over(partition by type order by qty))||'/'||to_char(count(*) over(partition by type)) as cnt2 from test;
TYPE QTY CNT2
---------- ---------- ------------
3 1/2
1 6 2/2
2 5 1/3
7 2/3
2 9 3/3
SQL> select * from test;
---------- -------------------------------------------------
1 11111
2 22222
3 33333
4 44444
SQL> select t.id,mc,to_char(b.rn)||'/'||t.id)e
2 from test t,
(select rownum rn from (select max(to_number(id)) mid from test) connect by rownum <=mid ))L
4 where b.rn<=to_number(t.id)
order by id
ID MC TO_CHAR(B.RN)||'/'||T.ID
--------- -------------------------------------------------- ---------------------------------------------------
1 11111 1/1
2 22222 1/2
2 22222 2/2
3 33333 1/3
3 33333 2/3
3 33333 3/3
44444 1/4 44444 2/4
4 44444 3/4CNOUG4 44444 4/4
10 rows selected
*******************************************************************
关于partition by
这些都是分析函数,好像是8.0以后才有的 row_number()和rownum差不多,功能更强一点(可以在各个分组内从1开时排序) rank()是跳跃排序,有两个第二名时接下来就是第四名(同样是在各个分组内) dense_rank()l是连续排序,有两个第二名时仍然跟着第三名。相比之下row_number是没有重复值的 lag(arg1,arg2,arg3): arg1是从其他行返回的表达式 arg2是希望检索的当前行分区的偏移量。是一个正的偏移量,时一个往回检索以前的行的数目。 arg3是在arg2表示的数目超出了分组的范围时返回的值。
1.
select deptno,row_number() over(partition by deptno order by sal) from emp order by deptno;
2.
select deptno,rank() over (partition by deptno order by sal) from emp order by deptno;
3.
select deptno,dense_rank() over(partition by deptno order by sal) from emp order by deptno;
4.
select deptno,ename,sal,lag(ename,1,null) over(partition by deptno order by ename) from emp ord er by deptno;
5.
select deptno,ename,sal,lag(ename,2,'example') over(partition by deptno order by ename) from em p
order by deptno;
6.
select deptno, sal,sum(sal) over(partition by deptno) from emp;--每行记录后都有总计值 select deptno, sum(sal) from emp group by deptno;
7. 求每个部门的平均工资以及每个人与所在部门的工资差额
select deptno,ename,sal ,
round(avg(sal) over(partition by deptno)) as dept_avg_sal,
round(sal-avg(sal) over(partition by deptno)) as dept_sal_diff
from emp;
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/hoho_lolo/archive/2010/03/16/5386185.aspx
分析函数语法:
FUNCTION_NAME(<argument>,<argument>...)
OVER
(<Partition-Clause><Order-by-Clause><Windowing Clause>)
例:
sum(sal) over (partition by deptno order by ename) new_alias
sum就是函数名
(sal)是分析函数的参数,每个函数有0~3个参数,参数可以是表达式,例如:sum(sal+comm)
over 是一个关键字,用于标识分析函数,否则查询分析器不能区别sum()聚集函数和sum()分析函数
partition by deptno 是可选的分区子句,如果不存在任何分区子句,则全部的结果集可看作一个单一的大区
order by ename 是可选的order by 子句,有些函数需要它,有些则不需要.依靠已排序数据的那些函数,如:用于访问结果集中前一行和后一行的LAG和LEAD,必须使用,其它函数,如AVG,则不需要.在使用了任何排序的开窗函数时,该子句是强制性的,它指定了在计算分析函数时一组内的数据是如何排序的.
copy:http://fxz-2008.iteye.com/blog/1007986
超级牛皮的oracle的分析函数over(Partition by...) 及开窗函数
over(Partition by...) 一个超级牛皮的ORACLE特有函数。
最近工作中才接触到这个功能强大而灵活的函数。
oracle的分析函数over 及开窗函数
一:分析函数over
Oracle从8.1.6开始提供分析函数,分析函数用于计算基于组的某种聚合值,它和聚合函数的不同之处是
对于每个组返回多行,而聚合函数对于每个组只返回一行。
下面通过几个例子来说明其应用。
1:统计某商店的营业额。
date sale
1 20
2 15
3 14
4 18
5 30
规则:按天统计:每天都统计前面几天的总额
得到的结果:
DATE SALE SUM
----- -------- ------
1 20 20 --1天
2 15 35 --1天+2天
3 14 49 --1天+2天+3天
4 18 67 .
5 30 97 .
2:统计各班成绩第一名的同学信息
NAME CLASS S
----- ----- ----------------------
fda 1 80
ffd 1 78
dss 1 95
cfe 2 74
gds 2 92
gf 3 99
ddd 3 99
adf 3 45
asdf 3 55
3dd 3 78
通过:
--
select * from
(
select name,class,s,rank()over(partition by class order by s desc) mm from t2
)
where mm=1
--
得到结果:
NAME CLASS S MM
----- ----- ---------------------- ----------------------
dss 1 95 1
gds 2 92 1
gf 3 99 1
ddd 3 99 1
注意:
1.在求第一名成绩的时候,不能用row_number(),因为如果同班有两个并列第一,row_number()只返回一个结果
2.rank()和dense_rank()的区别是:
--rank()是跳跃排序,有两个第二名时接下来就是第四名
--dense_rank()l是连续排序,有两个第二名时仍然跟着第三名
3.分类统计 (并显示信息)
A B C
-- -- ----------------------
m a 2
n a 3
m a 2
n b 2
n b 1
x b 3
x b 2
x b 4
h b 3
select a,c,sum(c)over(partition by a) from t2
得到结果:
A B C SUM(C)OVER(PARTITIONBYA)
-- -- ------- ------------------------
h b 3 3
m a 2 4
m a 2 4
n a 3 6
n b 2 6
n b 1 6
x b 3 9
x b 2 9
x b 4 9
如果用sum,group by 则只能得到
A SUM(C)
-- ----------------------
h 3
m 4
n 6
x 9
无法得到B列值
=====
select * from test
数据:
A B C
1 1 1
1 2 2
1 3 3
2 2 5
3 4 6
---将B栏位值相同的对应的C 栏位值加总
select a,b,c, SUM(C) OVER (PARTITION BY B) C_Sum
from test
A B C C_SUM
1 1 1 1
1 2 2 7
2 2 5 7
1 3 3 3
3 4 6 6
---如果不需要已某个栏位的值分割,那就要用 null
eg: 就是将C的栏位值summary 放在每行后面
select a,b,c, SUM(C) OVER (PARTITION BY null) C_Sum
from test
A B C C_SUM
1 1 1 17
1 2 2 17
1 3 3 17
2 2 5 17
3 4 6 17
求个人工资占部门工资的百分比
SQL> select * from salary;
NAME DEPT SAL
---------- ---- -----
a 10 2000
b 10 3000
c 10 5000
d 20 4000
SQL> select name,dept,sal,sal*100/sum(sal) over(partition by dept) percent from salary;
NAME DEPT SAL PERCENT
---------- ---- ----- ----------
a 10 2000 20
b 10 3000 30
c 10 5000 50
d 20 4000 100
二:开窗函数
开窗函数指定了分析函数工作的数据窗口大小,这个数据窗口大小可能会随着行的变化而变化,举例如下:
1:
over(order by salary) 按照salary排序进行累计,order by是个默认的开窗函数
over(partition by deptno)按照部门分区
2:
over(order by salary range between 5 preceding and 5 following)
每行对应的数据窗口是之前行幅度值不超过5,之后行幅度值不超过5
例如:对于以下列
aa
1
2
2
2
3
4
5
6
7
9
sum(aa)over(order by aa range between 2 preceding and 2 following)
得出的结果是
AA SUM
---------------------- -------------------------------------------------------
1 10
2 14
2 14
2 14
3 18
4 18
5 22
6 18
7 22
9 9
就是说,对于aa=5的一行 ,sum为 5-1<=aa<=5+2 的和
对于aa=2来说 ,sum=1+2+2+2+3+4=14 ;
又如 对于aa=9 ,9-1<=aa<=9+2 只有9一个数,所以sum=9 ;
3:其它:
over(order by salary rows between 2 preceding and 4 following)
每行对应的数据窗口是之前2行,之后4行
4:下面三条语句等效:
over(order by salary rows between unbounded preceding and unbounded following)
每行对应的数据窗口是从第一行到最后一行,等效:
over(order by salary range between unbounded preceding and unbounded following)
等效
over(partition by null)
常用的分析函数如下所列:
row_number() over(partition by ... order by ...)
rank() over(partition by ... order by ...)
dense_rank() over(partition by ... order by ...)
count() over(partition by ... order by ...)
max() over(partition by ... order by ...)
min() over(partition by ... order by ...)
sum() over(partition by ... order by ...)
avg() over(partition by ... order by ...)
first_value() over(partition by ... order by ...)
last_value() over(partition by ... order by ...)
lag() over(partition by ... order by ...)
lead() over(partition by ... order by ...)
示例
SQL> select type,qty from test;
TYPE QTY
---------- ----------
1 6
2 9
SQL> select type,qty,to_char(row_number() over(partition by type order by qty))||'/'||to_char(count(*) over(partition by type)) as cnt2 from test;
TYPE QTY CNT2
---------- ---------- ------------
3 1/2
1 6 2/2
2 5 1/3
7 2/3
2 9 3/3
SQL> select * from test;
---------- -------------------------------------------------
1 11111
2 22222
3 33333
4 44444
SQL> select t.id,mc,to_char(b.rn)||'/'||t.id)e
2 from test t,
(select rownum rn from (select max(to_number(id)) mid from test) connect by rownum <=mid ))L
4 where b.rn<=to_number(t.id)
order by id
ID MC TO_CHAR(B.RN)||'/'||T.ID
--------- -------------------------------------------------- ---------------------------------------------------
1 11111 1/1
2 22222 1/2
2 22222 2/2
3 33333 1/3
3 33333 2/3
3 33333 3/3
44444 1/4 44444 2/4
4 44444 3/4CNOUG4 44444 4/4
10 rows selected
*******************************************************************
关于partition by
这些都是分析函数,好像是8.0以后才有的 row_number()和rownum差不多,功能更强一点(可以在各个分组内从1开时排序) rank()是跳跃排序,有两个第二名时接下来就是第四名(同样是在各个分组内) dense_rank()l是连续排序,有两个第二名时仍然跟着第三名。相比之下row_number是没有重复值的 lag(arg1,arg2,arg3): arg1是从其他行返回的表达式 arg2是希望检索的当前行分区的偏移量。是一个正的偏移量,时一个往回检索以前的行的数目。 arg3是在arg2表示的数目超出了分组的范围时返回的值。
1.
select deptno,row_number() over(partition by deptno order by sal) from emp order by deptno;
2.
select deptno,rank() over (partition by deptno order by sal) from emp order by deptno;
3.
select deptno,dense_rank() over(partition by deptno order by sal) from emp order by deptno;
4.
select deptno,ename,sal,lag(ename,1,null) over(partition by deptno order by ename) from emp ord er by deptno;
5.
select deptno,ename,sal,lag(ename,2,'example') over(partition by deptno order by ename) from em p
order by deptno;
6.
select deptno, sal,sum(sal) over(partition by deptno) from emp;--每行记录后都有总计值 select deptno, sum(sal) from emp group by deptno;
7. 求每个部门的平均工资以及每个人与所在部门的工资差额
select deptno,ename,sal ,
round(avg(sal) over(partition by deptno)) as dept_avg_sal,
round(sal-avg(sal) over(partition by deptno)) as dept_sal_diff
from emp;
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/hoho_lolo/archive/2010/03/16/5386185.aspx
发表评论
-
DDL DML
2015-03-26 22:38 631http://blog.csdn.net/w183705952 ... -
oracle 连接 中的 ON 和WHERE
2014-11-25 17:24 709前提准备 CREATE TABLE A_TEST ( ... -
oracle UNION 和 UNION ALL
2014-11-25 17:04 580前提贮备 CREATE TABLE A_TEST ( ... -
oracle 连接
2014-11-25 16:29 478前提准备: 表的创建: CREATE TABL ... -
抽取oracle 所有表
2014-10-19 22:51 682package db; import java.io ... -
oracle中的数据库、用户、方案、表空间、表对象之间的关系
2014-06-06 09:32 707文章来源:http://blog.csdn.net/blogn ... -
oracle 聚合函数 keep
2013-12-24 17:33 4714聚合函数MIN, MAX, SUM, AVG, COUNT, ... -
Oracle merge into 命令
2013-12-20 09:33 735原文:http://jayklin.iteye.com/blo ... -
oracle 数据备份
2013-11-26 23:30 663使用EXPDP和IMPDP时应该注意的事项: EXP和IMP ...
相关推荐
### Oracle分析函数OVER及开窗函数详解 #### 一、概述 在Oracle数据库中,分析函数(Analytic Functions)是一种非常强大的工具,用于处理复杂的查询需求。这些函数可以在一组相关的行上执行计算,并且每行返回一个...
### Oracle分析函数详解 #### 一、Oracle分析函数概述 Oracle分析函数是在处理大量数据时极为有用的一套工具,主要用于在线分析处理(OLAP)场景。这类函数可以在多个级别上进行数据聚合,并支持复杂的排序、分组...
### Oracle分析函数详解 #### 一、概述 Oracle分析函数是一种强大的工具,它允许用户对分组数据执行复杂的计算,并且结果可以根据特定条件进行动态调整。这种灵活性使得Oracle分析函数在处理复杂的数据集时非常...
Oracle 分析函数(用法+实例) Oracle 分析函数是 Oracle 8.1.6 版本中引入的高级应用,属于 Oracle 的一大亮点。分析函数可以分为四大类:排名函数、聚合函数、行比较函数和统计函数。下面将对分析函数的原理、...
其中,Oracle的分析函数是其强大的特性之一,它允许用户在单个SQL查询中执行复杂的分析操作,而无需使用子查询或者自连接。这篇文档将深入探讨Oracle中的分析函数,帮助你更好地理解和利用这一功能。 一、什么是...
Oracle分析函数是数据库管理系统Oracle中的一个强大特性,它允许用户在SQL查询中执行复杂的分析操作。分析函数在处理报表和数据迁移任务时尤其有用,因为它们可以基于分组计算聚合值,并为每个分组返回多行,而不...
Oracle 分析函数是一种强大的SQL工具,它允许你在处理数据时执行复杂的分析操作,而不像聚合...参考书籍如Tom Kyte的《Expert One-on-One》和Oracle 9i SQL Reference等,都是深入学习和理解Oracle分析函数的宝贵资源。
Oracle 分析函数是一种高级SQL功能,它允许在单个查询中对数据集进行复杂的分析,无需额外的编程或多次数据库交互。分析函数处理的结果通常基于数据的分组、排序或特定窗口,为统计汇总和复杂的数据分析提供了便利。...
Oracle 分析函数详解 Oracle 分析函数是 Oracle 数据库中的一种强大功能,能够帮助用户快速进行数据分析和处理。在本文中,我们将对 Oracle 分析函数进行详细的介绍,并对其各个函数进行解释。 一、总体介绍 ...
3. **分析函数OVER解析** `OVER`子句是分析函数的关键部分,它可以接受两个主要部分:`PARTITION BY`和`ORDER BY`。 - `PARTITION BY`:将数据集划分为多个分区,每个分区内的分析函数独立计算。 - `ORDER BY`:...
### Oracle分析函数详解 #### 一、概述 Oracle分析函数是一种强大的工具,它自Oracle 8.1.6版本开始引入,并在后续版本中不断完善和发展。这类函数的主要用途在于能够针对一组数据执行复杂的聚合计算,并且不同于...
Oracle分析函数是数据库管理系统Oracle中的一种高级SQL特性,它允许用户在单个查询中对一组行进行计算,而无需使用子查询或自连接。这些函数极大地增强了数据分析和报告的能力,提高了查询性能。以下是对Oracle分析...
1 Oracle开发专题之:分析函数 OVER 2 Oracle开发专题之:分析函数 Rank Dense rank row number 3 Oracle开发专题之:分析函数3 Top Bottom N First Last NTile 4 Oracle开发专题之:窗口函数 5 Oracle开发专题...
Oracle分析函数的语法通常包括`OVER()`子句,允许指定窗口或分区定义。这种强大的工具使得在复杂的SQL查询中实现数据统计和分析变得简单,减少了对复杂子查询的依赖,提高了性能。例如,`function_name(arg1,arg2,.....
#### 三、分析函数OVER解析 1. **分析函数语法**: 分析函数的基本语法结构如下: ```sql FUNCTION_NAME(,) OVER ( ) ``` - `FUNCTION_NAME` 是分析函数的名称,例如SUM、COUNT等。 - `<argument>...
Oracle分析函数是数据库管理系统Oracle中的一个重要特性,自8.1.6版本开始引入,它们用于执行基于组的聚合计算,并且为每个组返回多行结果,而不仅仅是单行。这使得分析函数在数据分析和报表生成方面非常有用,能够...
主要包括分析函数(OVER);分析函数2(Rank, Dense_rank, row_number);分析函数3(Top/Bottom N、First/Last、NTile);窗口函数;报表函数;分析函数总结;26个分析函数;PLSQL开发笔记和小结;分析函数简述 ROW_NUMBER () ...
ORACLE分析函数 ORACLE分析函数是数据库管理系统中的一种功能强大且灵活的分析工具,能够对数据进行复杂的分析和处理。通过使用分析函数,开发者可以更加方便地实现业务逻辑,提高查询效率和数据处理速度。 在本...