`
flychao88
  • 浏览: 753073 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

玩转Flume+Kafka原来也就那点事儿

 
阅读更多

好久没有写分享了,继前一个系列进行了Kafka源码分享之后,接下来进行Flume源码分析系列,望大家继续关注,今天先进行开篇文章Flume+kafka的环境配置与使用。

一、FLUME介绍

Flume是一个分布式、可靠、和高可用的海量日志聚合的系统,支持在系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。
设计目标:
(1) 可靠性
当节点出现故障时,日志能够被传送到其他节点上而不会丢失。Flume提供了三种级别的可靠性保障,从强到弱依次分别为:end-to-end(收到数据agent首先将event写到磁盘上,当数据传送成功后,再删除;如果数据发送失败,可以重新发送。),Store on failure(这也是scribe采用的策略,当数据接收方crash时,将数据写到本地,待恢复后,继续发送),Best effort(数据发送到接收方后,不会进行确认)。
(2) 可扩展性
Flume采用了三层架构,分别为agent,collector和storage,每一层均可以水平扩展。其中,所有agent和collector由master统一管理,这使得系统容易监控和维护,且master允许有多个(使用ZooKeeper进行管理和负载均衡),这就避免了单点故障问题。
(3) 可管理性
所有agent和colletor由master统一管理,这使得系统便于维护。多master情况,Flume利用ZooKeeper和gossip,保证动态配置数据的一致性。用户可以在master上查看各个数据源或者数据流执行情况,且可以对各个数据源配置和动态加载。Flume提供了web 和shell script command两种形式对数据流进行管理。
(4) 功能可扩展性
用户可以根据需要添加自己的agent,collector或者storage。此外,Flume自带了很多组件,包括各种agent(file, syslog等),collector和storage(file,HDFS等)。

二、Flume 的 一些核心概念:

组件名称 功能介绍
Agent代理 使用JVM 运行Flume。每台机器运行一个agent,但是可以在一个agent中包含多个sources和sinks。
Client客户端 生产数据,运行在一个独立的线程。
Source源 从Client收集数据,传递给Channel。
Sink接收器 从Channel收集数据,进行相关操作,运行在一个独立线程。
Channel通道 连接 sources 和 sinks ,这个有点像一个队列。
Events事件 传输的基本数据负载。

三、Flume的整体构成图


Paste_Image.png

注意
源将事件写到一个多或者多个通道中。
接收器只从一个通道接收事件。
代理可能会有多个源、通道与接收器。

四、Flume环境配置


Paste_Image.png
  • 安装包内容如下

Paste_Image.png
  • 配置文件

常用配置模式一

扫描指定文件

agent.sources.s1.type=exec
agent.sources.s1.command=tail -F /Users/it-od-m/Downloads/abc.log
agent.sources.s1.channels=c1
agent.channels.c1.type=memory
agent.channels.c1.capacity=10000
agent.channels.c1.transactionCapacity=100

#设置Kafka接收器
agent.sinks.k1.type= org.apache.flume.sink.kafka.KafkaSink
#设置Kafka的broker地址和端口号
agent.sinks.k1.brokerList=127.0.0.1:9092
#设置Kafka的Topic
agent.sinks.k1.topic=testKJ1
#设置序列化方式
agent.sinks.k1.serializer.class=kafka.serializer.StringEncoder

agent.sinks.k1.channel=c1

常用配置模式二

Agent名称定义为agent.   
Source:可以理解为输入端,定义名称为s1  
channel:传输频道,定义为c1,设置为内存模式  
sinks:可以理解为输出端,定义为sk1,  

agent.sources = s1    
agent.channels = c1  
agent.sinks = sk1  

#设置Source的内省为netcat 端口为5678,使用的channel为c1  
agent.sources.s1.type = netcat  
agent.sources.s1.bind = localhost  
agent.sources.s1.port = 3456  
agent.sources.s1.channels = c1  

#设置Sink为logger模式,使用的channel为c1  
agent.sinks.sk1.type = logger  
agent.sinks.sk1.channel = c1  
#设置channel信息  
agent.channels.c1.type = memory #内存模式  
agent.channels.c1.capacity = 1000     
agent.channels.c1.transactionCapacity = 100 #传输参数设置。

常用配置模式三

扫描目录新增文件

agent.sources = s1  
agent.channels = c1  
agent.sinks = sk1  

#设置spooldir  
agent.sources.s1.type = spooldir  
agent.sources.s1.spoolDir = /Users/it-od-m/logs  
agent.sources.s1.fileHeader = true  

agent.sources.s1.channels = c1  
agent.sinks.sk1.type = logger  
agent.sinks.sk1.channel = c1  

#In Memory !!!  
agent.channels.c1.type = memory  
agent.channels.c1.capacity = 10004  
agent.channels.c1.transactionCapacity = 100

我们今天重点使用第一种模式,因为要与Kafka相结合。
配置好参数以后,回到如下目录:


Paste_Image.png

使用如下命令启动Flume:

 ./bin/flume-ng agent -n agent -c conf -f conf/hw.conf -Dflume.root.logger=INFO,console

Paste_Image.png

最后一行显示Component type:SINK,name:k1 started表示启动成功。

在启动Flume之前,Zookeeper和Kafka要先启动成功,不然启动Flume会报连不上Kafka的错误。

1、使用./zkServer.sh start启动zookeeper。
2、使用如下命令启动Kafka,更详细的Kafka命令请参照我之前总结的http://www.jianshu.com/p/cfedb7122e38 (Kafka常用命令行总结)

./kafka-server-start.sh -daemon ../config/server.properties

3、使用Kafka默认提供的Consumer来接收消息

./kafka-console-consumer.sh -zookeeper localhost:2181 --from-beginning --topic testKJ1

4、编写简单Shell脚本output.sh,并修改权限为可执行权限

for((i=0;i<=50000;i++));
do echo "test-"+$i>>abc.log;
done

循环向abc.log文件插入test文本消息。
5、执行output.sh。


Paste_Image.png

整个过程流程如下:


Paste_Image.png

至此简单的使用介绍已经讲完,关于Flume还有非常多的属性和配置技巧需要我们去挖掘,我们以此文章作为开篇为的是为以后源码分析作为铺垫。

 

 
分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics