import java.awt.*; import java.awt.image.BufferedImage; import java.awt.image.DataBufferByte; import java.io.BufferedOutputStream; import java.io.ByteArrayOutputStream; import java.io.FileOutputStream; import java.io.IOException; import java.io.OutputStream; /** * Class AnimatedGifEncoder - Encodes a GIF file consisting of one or more * frames. * * <pre> * Example: * AnimatedGifEncoder e = new AnimatedGifEncoder(); * e.start(outputFileName); * e.setDelay(1000); // 1 frame per sec * e.addFrame(image1); * e.addFrame(image2); * e.finish(); * </pre> * * No copyright asserted on the source code of this class. May be used for any * purpose, however, refer to the Unisys LZW patent for restrictions on use of * the associated Encoder class. Please forward any corrections to questions at * fmsware.com. * * @author wzztestin * */ public class GifEncoder { protected int width; // image size protected int height; protected Color transparent = null; // transparent color if given protected int transIndex; // transparent index in color table protected int repeat = -1; // no repeat protected int delay = 0; // frame delay (hundredths) protected boolean started = false; // ready to output frames protected OutputStream out; protected BufferedImage image; // current frame protected byte[] pixels; // BGR byte array from frame protected byte[] indexedPixels; // converted frame indexed to palette protected int colorDepth; // number of bit planes protected byte[] colorTab; // RGB palette protected boolean[] usedEntry = new boolean[256]; // active palette entries protected int palSize = 7; // color table size (bits-1) protected int dispose = -1; // disposal code (-1 = use default) protected boolean closeStream = false; // close stream when finished protected boolean firstFrame = true; protected boolean sizeSet = false; // if false, get size from first frame protected int sample = 10; // default sample interval for quantizer /** * Sets the delay time between each frame, or changes it for subsequent * frames (applies to last frame added). * * @param ms * int delay time in milliseconds */ public void setDelay(int ms) { delay = Math.round(ms / 10.0f); } /** * Sets the GIF frame disposal code for the last added frame and any * subsequent frames. Default is 0 if no transparent color has been set, * otherwise 2. * * @param code * int disposal code. */ public void setDispose(int code) { if (code >= 0) { dispose = code; } } /** * Sets the number of times the set of GIF frames should be played. Default * is 1; 0 means play indefinitely. Must be invoked before the first image * is added. * * @param iter * int number of iterations. * @return */ public void setRepeat(int iter) { if (iter >= 0) { repeat = iter; } } /** * Sets the transparent color for the last added frame and any subsequent * frames. Since all colors are subject to modification in the quantization * process, the color in the final palette for each frame closest to the * given color becomes the transparent color for that frame. May be set to * null to indicate no transparent color. * * @param c * Color to be treated as transparent on display. */ public void setTransparent(Color c) { transparent = c; } /** * Adds next GIF frame. The frame is not written immediately, but is * actually deferred until the next frame is received so that timing data * can be inserted. Invoking <code>finish()</code> flushes all frames. If * <code>setSize</code> was not invoked, the size of the first image is used * for all subsequent frames. * * @param im * BufferedImage containing frame to write. * @return true if successful. */ public boolean addFrame(BufferedImage im) { if ((im == null) || !started) { return false; } boolean ok = true; try { if (!sizeSet) { // use first frame's size setSize(im.getWidth(), im.getHeight()); } image = im; getImagePixels(); // convert to correct format if necessary analyzePixels(); // build color table & map pixels if (firstFrame) { writeLSD(); // logical screen descriptior writePalette(); // global color table if (repeat >= 0) { // use NS app extension to indicate reps writeNetscapeExt(); } } writeGraphicCtrlExt(); // write graphic control extension writeImageDesc(); // image descriptor if (!firstFrame) { writePalette(); // local color table } writePixels(); // encode and write pixel data firstFrame = false; } catch (IOException e) { ok = false; } return ok; } // added by alvaro public boolean outFlush() { boolean ok = true; try { out.flush(); return ok; } catch (IOException e) { ok = false; } return ok; } public byte[] getFrameByteArray() { return ((ByteArrayOutputStream) out).toByteArray(); } /** * Flushes any pending data and closes output file. If writing to an * OutputStream, the stream is not closed. */ public boolean finish() { if (!started) return false; boolean ok = true; started = false; try { out.write(0x3b); // gif trailer out.flush(); if (closeStream) { out.close(); } } catch (IOException e) { ok = false; } return ok; } public void reset() { // reset for subsequent use transIndex = 0; out = null; image = null; pixels = null; indexedPixels = null; colorTab = null; closeStream = false; firstFrame = true; } /** * Sets frame rate in frames per second. Equivalent to * <code>setDelay(1000/fps)</code>. * * @param fps * float frame rate (frames per second) */ public void setFrameRate(float fps) { if (fps != 0f) { delay = Math.round(100f / fps); } } /** * Sets quality of color quantization (conversion of images to the maximum * 256 colors allowed by the GIF specification). Lower values (minimum = 1) * produce better colors, but slow processing significantly. 10 is the * default, and produces good color mapping at reasonable speeds. Values * greater than 20 do not yield significant improvements in speed. * * @param quality * int greater than 0. * @return */ public void setQuality(int quality) { if (quality < 1) quality = 1; sample = quality; } /** * Sets the GIF frame size. The default size is the size of the first frame * added if this method is not invoked. * * @param w * int frame width. * @param h * int frame width. */ public void setSize(int w, int h) { if (started && !firstFrame) return; width = w; height = h; if (width < 1) width = 320; if (height < 1) height = 240; sizeSet = true; } /** * Initiates GIF file creation on the given stream. The stream is not closed * automatically. * * @param os * OutputStream on which GIF images are written. * @return false if initial write failed. */ public boolean start(OutputStream os) { if (os == null) return false; boolean ok = true; closeStream = false; out = os; try { writeString("GIF89a"); // header } catch (IOException e) { ok = false; } return started = ok; } /** * Initiates writing of a GIF file with the specified name. * * @param file * String containing output file name. * @return false if open or initial write failed. */ public boolean start(String file) { boolean ok = true; try { out = new BufferedOutputStream(new FileOutputStream(file)); ok = start(out); closeStream = true; } catch (IOException e) { ok = false; } return started = ok; } /** * Analyzes image colors and creates color map. */ protected void analyzePixels() { int len = pixels.length; int nPix = len / 3; indexedPixels = new byte[nPix]; Quant nq = new Quant(pixels, len, sample); // initialize quantizer colorTab = nq.process(); // create reduced palette // convert map from BGR to RGB for (int i = 0; i < colorTab.length; i += 3) { byte temp = colorTab[i]; colorTab[i] = colorTab[i + 2]; colorTab[i + 2] = temp; usedEntry[i / 3] = false; } // map image pixels to new palette int k = 0; for (int i = 0; i < nPix; i++) { int index = nq.map(pixels[k++] & 0xff, pixels[k++] & 0xff, pixels[k++] & 0xff); usedEntry[index] = true; indexedPixels[i] = (byte) index; } pixels = null; colorDepth = 8; palSize = 7; // get closest match to transparent color if specified if (transparent != null) { transIndex = findClosest(transparent); } } /** * Returns index of palette color closest to c * */ protected int findClosest(Color c) { if (colorTab == null) return -1; int r = c.getRed(); int g = c.getGreen(); int b = c.getBlue(); int minpos = 0; int dmin = 256 * 256 * 256; int len = colorTab.length; for (int i = 0; i < len;) { int dr = r - (colorTab[i++] & 0xff); int dg = g - (colorTab[i++] & 0xff); int db = b - (colorTab[i] & 0xff); int d = dr * dr + dg * dg + db * db; int index = i / 3; if (usedEntry[index] && (d < dmin)) { dmin = d; minpos = index; } i++; } return minpos; } /** * Extracts image pixels into byte array "pixels" */ protected void getImagePixels() { int w = image.getWidth(); int h = image.getHeight(); int type = image.getType(); if ((w != width) || (h != height) || (type != BufferedImage.TYPE_3BYTE_BGR)) { // create new image with right size/format BufferedImage temp = new BufferedImage(width, height, BufferedImage.TYPE_3BYTE_BGR); Graphics2D g = temp.createGraphics(); g.drawImage(image, 0, 0, null); image = temp; } pixels = ((DataBufferByte) image.getRaster().getDataBuffer()).getData(); } /** * Writes Graphic Control Extension */ protected void writeGraphicCtrlExt() throws IOException { out.write(0x21); // extension introducer out.write(0xf9); // GCE label out.write(4); // data block size int transp, disp; if (transparent == null) { transp = 0; disp = 0; // dispose = no action } else { transp = 1; disp = 2; // force clear if using transparent color } if (dispose >= 0) { disp = dispose & 7; // user override } disp <<= 2; // packed fields out.write(0 | // 1:3 reserved disp | // 4:6 disposal 0 | // 7 user input - 0 = none transp); // 8 transparency flag writeShort(delay); // delay x 1/100 sec out.write(transIndex); // transparent color index out.write(0); // block terminator } /** * Writes Image Descriptor */ protected void writeImageDesc() throws IOException { out.write(0x2c); // image separator writeShort(0); // image position x,y = 0,0 writeShort(0); writeShort(width); // image size writeShort(height); // packed fields if (firstFrame) { // no LCT - GCT is used for first (or only) frame out.write(0); } else { // specify normal LCT out.write(0x80 | // 1 local color table 1=yes 0 | // 2 interlace - 0=no 0 | // 3 sorted - 0=no 0 | // 4-5 reserved palSize); // 6-8 size of color table } } /** * Writes Logical Screen Descriptor */ protected void writeLSD() throws IOException { // logical screen size writeShort(width); writeShort(height); // packed fields out.write((0x80 | // 1 : global color table flag = 1 (gct used) 0x70 | // 2-4 : color resolution = 7 0x00 | // 5 : gct sort flag = 0 palSize)); // 6-8 : gct size out.write(0); // background color index out.write(0); // pixel aspect ratio - assume 1:1 } /** * Writes Netscape application extension to define repeat count. */ protected void writeNetscapeExt() throws IOException { out.write(0x21); // extension introducer out.write(0xff); // app extension label out.write(11); // block size writeString("NETSCAPE" + "2.0"); // app id + auth code out.write(3); // sub-block size out.write(1); // loop sub-block id writeShort(repeat); // loop count (extra iterations, 0=repeat forever) out.write(0); // block terminator } /** * Writes color table */ protected void writePalette() throws IOException { out.write(colorTab, 0, colorTab.length); int n = (3 * 256) - colorTab.length; for (int i = 0; i < n; i++) { out.write(0); } } /** * Encodes and writes pixel data */ protected void writePixels() throws IOException { Encoder encoder = new Encoder(width, height, indexedPixels, colorDepth); encoder.encode(out); } /** * Write 16-bit value to output stream, LSB first */ protected void writeShort(int value) throws IOException { out.write(value & 0xff); out.write((value >> 8) & 0xff); } /** * Writes string to output stream */ protected void writeString(String s) throws IOException { for (int i = 0; i < s.length(); i++) { out.write((byte) s.charAt(i)); } } }
/** * * @author wzztestin * */ public class Quant { protected static final int netsize = 256; /* number of colours used */ /* four primes near 500 - assume no image has a length so large */ /* that it is divisible by all four primes */ protected static final int prime1 = 499; protected static final int prime2 = 491; protected static final int prime3 = 487; protected static final int prime4 = 503; protected static final int minpicturebytes = (3 * prime4); /* minimum size for input image */ /* * Program Skeleton ---------------- [select samplefac in range 1..30] [read * image from input file] pic = (unsigned char*) malloc(3*width*height); * initnet(pic,3*width*height,samplefac); learn(); unbiasnet(); [write * output image header, using writecolourmap(f)] inxbuild(); write output * image using inxsearch(b,g,r) */ /* * Network Definitions ------------------- */ protected static final int maxnetpos = (netsize - 1); protected static final int netbiasshift = 4; /* bias for colour values */ protected static final int ncycles = 100; /* no. of learning cycles */ /* defs for freq and bias */ protected static final int intbiasshift = 16; /* bias for fractions */ protected static final int intbias = (((int) 1) << intbiasshift); protected static final int gammashift = 10; /* gamma = 1024 */ protected static final int gamma = (((int) 1) << gammashift); protected static final int betashift = 10; protected static final int beta = (intbias >> betashift); /* beta = 1/1024 */ protected static final int betagamma = (intbias << (gammashift - betashift)); /* defs for decreasing radius factor */ protected static final int initrad = (netsize >> 3); /* * for 256 cols, radius * starts */ protected static final int radiusbiasshift = 6; /* at 32.0 biased by 6 bits */ protected static final int radiusbias = (((int) 1) << radiusbiasshift); protected static final int initradius = (initrad * radiusbias); /* * and * decreases * by a */ protected static final int radiusdec = 30; /* factor of 1/30 each cycle */ /* defs for decreasing alpha factor */ protected static final int alphabiasshift = 10; /* alpha starts at 1.0 */ protected static final int initalpha = (((int) 1) << alphabiasshift); protected int alphadec; /* biased by 10 bits */ /* radbias and alpharadbias used for radpower calculation */ protected static final int radbiasshift = 8; protected static final int radbias = (((int) 1) << radbiasshift); protected static final int alpharadbshift = (alphabiasshift + radbiasshift); protected static final int alpharadbias = (((int) 1) << alpharadbshift); /* * Types and Global Variables -------------------------- */ protected byte[] thepicture; /* the input image itself */ protected int lengthcount; /* lengthcount = H*W*3 */ protected int samplefac; /* sampling factor 1..30 */ // typedef int pixel[4]; /* BGRc */ protected int[][] network; /* the network itself - [netsize][4] */ protected int[] netindex = new int[256]; /* for network lookup - really 256 */ protected int[] bias = new int[netsize]; /* bias and freq arrays for learning */ protected int[] freq = new int[netsize]; protected int[] radpower = new int[initrad]; /* radpower for precomputation */ /* * Initialise network in range (0,0,0) to (255,255,255) and set parameters * ----------------------------------------------------------------------- */ public Quant(byte[] thepic, int len, int sample) { int i; int[] p; thepicture = thepic; lengthcount = len; samplefac = sample; network = new int[netsize][]; for (i = 0; i < netsize; i++) { network[i] = new int[4]; p = network[i]; p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize; freq[i] = intbias / netsize; /* 1/netsize */ bias[i] = 0; } } public byte[] colorMap() { byte[] map = new byte[3 * netsize]; int[] index = new int[netsize]; for (int i = 0; i < netsize; i++) index[network[i][3]] = i; int k = 0; for (int i = 0; i < netsize; i++) { int j = index[i]; map[k++] = (byte) (network[j][0]); map[k++] = (byte) (network[j][1]); map[k++] = (byte) (network[j][2]); } return map; } /* * Insertion sort of network and building of netindex[0..255] (to do after * unbias) * ------------------------------------------------------------------ * ------------- */ public void inxbuild() { int i, j, smallpos, smallval; int[] p; int[] q; int previouscol, startpos; previouscol = 0; startpos = 0; for (i = 0; i < netsize; i++) { p = network[i]; smallpos = i; smallval = p[1]; /* index on g */ /* find smallest in i..netsize-1 */ for (j = i + 1; j < netsize; j++) { q = network[j]; if (q[1] < smallval) { /* index on g */ smallpos = j; smallval = q[1]; /* index on g */ } } q = network[smallpos]; /* swap p (i) and q (smallpos) entries */ if (i != smallpos) { j = q[0]; q[0] = p[0]; p[0] = j; j = q[1]; q[1] = p[1]; p[1] = j; j = q[2]; q[2] = p[2]; p[2] = j; j = q[3]; q[3] = p[3]; p[3] = j; } /* smallval entry is now in position i */ if (smallval != previouscol) { netindex[previouscol] = (startpos + i) >> 1; for (j = previouscol + 1; j < smallval; j++) netindex[j] = i; previouscol = smallval; startpos = i; } } netindex[previouscol] = (startpos + maxnetpos) >> 1; for (j = previouscol + 1; j < 256; j++) netindex[j] = maxnetpos; /* really 256 */ } /* * Main Learning Loop ------------------ */ public void learn() { int i, j, b, g, r; int radius, rad, alpha, step, delta, samplepixels; byte[] p; int pix, lim; if (lengthcount < minpicturebytes) samplefac = 1; alphadec = 30 + ((samplefac - 1) / 3); p = thepicture; pix = 0; lim = lengthcount; samplepixels = lengthcount / (3 * samplefac); delta = samplepixels / ncycles; alpha = initalpha; radius = initradius; rad = radius >> radiusbiasshift; if (rad <= 1) rad = 0; for (i = 0; i < rad; i++) radpower[i] = alpha * (((rad * rad - i * i) * radbias) / (rad * rad)); // fprintf(stderr,"beginning 1D learning: initial radius=%d\n", rad); if (lengthcount < minpicturebytes) step = 3; else if ((lengthcount % prime1) != 0) step = 3 * prime1; else { if ((lengthcount % prime2) != 0) step = 3 * prime2; else { if ((lengthcount % prime3) != 0) step = 3 * prime3; else step = 3 * prime4; } } i = 0; while (i < samplepixels) { b = (p[pix + 0] & 0xff) << netbiasshift; g = (p[pix + 1] & 0xff) << netbiasshift; r = (p[pix + 2] & 0xff) << netbiasshift; j = contest(b, g, r); altersingle(alpha, j, b, g, r); if (rad != 0) alterneigh(rad, j, b, g, r); /* alter neighbours */ pix += step; if (pix >= lim) pix -= lengthcount; i++; if (delta == 0) delta = 1; if (i % delta == 0) { alpha -= alpha / alphadec; radius -= radius / radiusdec; rad = radius >> radiusbiasshift; if (rad <= 1) rad = 0; for (j = 0; j < rad; j++) radpower[j] = alpha * (((rad * rad - j * j) * radbias) / (rad * rad)); } } // fprintf(stderr,"finished 1D learning: final alpha=%f !\n",((float)alpha)/initalpha); } /* * Search for BGR values 0..255 (after net is unbiased) and return colour * index * -------------------------------------------------------------------- * -------- */ public int map(int b, int g, int r) { int i, j, dist, a, bestd; int[] p; int best; bestd = 1000; /* biggest possible dist is 256*3 */ best = -1; i = netindex[g]; /* index on g */ j = i - 1; /* start at netindex[g] and work outwards */ while ((i < netsize) || (j >= 0)) { if (i < netsize) { p = network[i]; dist = p[1] - g; /* inx key */ if (dist >= bestd) i = netsize; /* stop iter */ else { i++; if (dist < 0) dist = -dist; a = p[0] - b; if (a < 0) a = -a; dist += a; if (dist < bestd) { a = p[2] - r; if (a < 0) a = -a; dist += a; if (dist < bestd) { bestd = dist; best = p[3]; } } } } if (j >= 0) { p = network[j]; dist = g - p[1]; /* inx key - reverse dif */ if (dist >= bestd) j = -1; /* stop iter */ else { j--; if (dist < 0) dist = -dist; a = p[0] - b; if (a < 0) a = -a; dist += a; if (dist < bestd) { a = p[2] - r; if (a < 0) a = -a; dist += a; if (dist < bestd) { bestd = dist; best = p[3]; } } } } } return (best); } public byte[] process() { learn(); unbiasnet(); inxbuild(); return colorMap(); } /* * Unbias network to give byte values 0..255 and record position i to * prepare for sort * ---------------------------------------------------------- * ------------------------- */ @SuppressWarnings("unused") public void unbiasnet() { int i, j; for (i = 0; i < netsize; i++) { network[i][0] >>= netbiasshift; network[i][1] >>= netbiasshift; network[i][2] >>= netbiasshift; network[i][3] = i; /* record colour no */ } } /* * Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in * radpower[|i-j|] * ---------------------------------------------------------- * ----------------------- */ protected void alterneigh(int rad, int i, int b, int g, int r) { int j, k, lo, hi, a, m; int[] p; lo = i - rad; if (lo < -1) lo = -1; hi = i + rad; if (hi > netsize) hi = netsize; j = i + 1; k = i - 1; m = 1; while ((j < hi) || (k > lo)) { a = radpower[m++]; if (j < hi) { p = network[j++]; try { p[0] -= (a * (p[0] - b)) / alpharadbias; p[1] -= (a * (p[1] - g)) / alpharadbias; p[2] -= (a * (p[2] - r)) / alpharadbias; } catch (Exception e) { } // prevents 1.3 miscompilation } if (k > lo) { p = network[k--]; try { p[0] -= (a * (p[0] - b)) / alpharadbias; p[1] -= (a * (p[1] - g)) / alpharadbias; p[2] -= (a * (p[2] - r)) / alpharadbias; } catch (Exception e) { } } } } /* * Move neuron i towards biased (b,g,r) by factor alpha * ---------------------------------------------------- */ protected void altersingle(int alpha, int i, int b, int g, int r) { /* alter hit neuron */ int[] n = network[i]; n[0] -= (alpha * (n[0] - b)) / initalpha; n[1] -= (alpha * (n[1] - g)) / initalpha; n[2] -= (alpha * (n[2] - r)) / initalpha; } /* * Search for biased BGR values ---------------------------- */ protected int contest(int b, int g, int r) { /* finds closest neuron (min dist) and updates freq */ /* finds best neuron (min dist-bias) and returns position */ /* * for frequently chosen neurons, freq[i] is high and bias[i] is * negative */ /* bias[i] = gamma*((1/netsize)-freq[i]) */ int i, dist, a, biasdist, betafreq; int bestpos, bestbiaspos, bestd, bestbiasd; int[] n; bestd = ~(((int) 1) << 31); bestbiasd = bestd; bestpos = -1; bestbiaspos = bestpos; for (i = 0; i < netsize; i++) { n = network[i]; dist = n[0] - b; if (dist < 0) dist = -dist; a = n[1] - g; if (a < 0) a = -a; dist += a; a = n[2] - r; if (a < 0) a = -a; dist += a; if (dist < bestd) { bestd = dist; bestpos = i; } biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift)); if (biasdist < bestbiasd) { bestbiasd = biasdist; bestbiaspos = i; } betafreq = (freq[i] >> betashift); freq[i] -= betafreq; bias[i] += (betafreq << gammashift); } freq[bestpos] += beta; bias[bestpos] -= betagamma; return (bestbiaspos); } }
相关推荐
对于上述内容,`GifCapatche`可能是一个用于生成GIF验证码的Java工具或库。尽管具体实现细节未在描述中给出,但我们可以推断它应该包含了创建多帧验证码图片并合成GIF的功能,可能还提供了自定义配置项,如字符集、...
本项目基于Java编程语言实现,提供了生成动态验证码的功能,支持GIF和PNG两种图像格式,适用于Java Web项目以及前后端分离的开发模式。下面将详细阐述这个验证码生成项目的核心知识点。 1. **Java开发**: Java是...
在Android开发中,动态验证码(通常以GIF格式呈现)是一种常见的安全机制,用于验证用户身份,防止自动化脚本或机器人进行恶意操作。本项目提供了一个示例,可以帮助开发者了解如何在Android应用中实现GIF动态验证码...
5. **保存和显示验证码**:生成的验证码图片可以保存为`.png`或`.gif`等格式,通过HTTP响应发送到客户端,或者直接在GUI应用中显示。在Web应用中,可以使用`response.getOutputStream()`写入图片的字节流。 6. **...
生成加减乘除或者输入验证的验证码工具,png加减乘除输入结果、gif看图输入验证
我们可以使用Java的`java.awt`和`javax.imageio`包来绘制图像和保存为PNG或GIF格式。以下是一个简单的例子: ```java BufferedImage image = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB); ...
在这个项目中,提供的资源包括不同格式的验证码图像(B124-2017.gif、B124-2017.jpg、B124-2017.png),可能用于训练和测试识别算法。Code.bmp可能是验证码识别过程中的示例图像,而Code.exe是实际运行的识别软件。...
5. **图像读写**: Java标准库中的`javax.imageio.ImageIO`类提供了读取和写入图像文件的能力,支持多种格式,如JPEG、PNG、GIF等。`ImageIO.read()`用于读取图像,`ImageIO.write()`用于将BufferedImage保存为文件。...
Spring4GWT GWT Spring 使得在 Spring 框架下构造 GWT 应用变得很简单,提供一个易于理解...可以将网络图导出为 GIF, JPEG, PNG, PPM, ARP and PNML (XML based)文件格式。使用了优秀的JHotDraw 5.2 框架。 activemq...
Spring4GWT GWT Spring 使得在 Spring 框架下构造 GWT 应用变得很简单,提供一个易于理解...可以将网络图导出为 GIF, JPEG, PNG, PPM, ARP and PNML (XML based)文件格式。使用了优秀的JHotDraw 5.2 框架。 activemq...
Spring4GWT GWT Spring 使得在 Spring 框架下构造 GWT 应用变得很简单,提供一个易于理解...可以将网络图导出为 GIF, JPEG, PNG, PPM, ARP and PNML (XML based)文件格式。使用了优秀的JHotDraw 5.2 框架。 activemq...
Spring4GWT GWT Spring 使得在 Spring 框架下构造 GWT 应用变得很简单,提供一个易于理解...可以将网络图导出为 GIF, JPEG, PNG, PPM, ARP and PNML (XML based)文件格式。使用了优秀的JHotDraw 5.2 框架。 activemq...
Spring4GWT GWT Spring 使得在 Spring 框架下构造 GWT 应用变得很简单,提供一个易于理解...可以将网络图导出为 GIF, JPEG, PNG, PPM, ARP and PNML (XML based)文件格式。使用了优秀的JHotDraw 5.2 框架。 activemq...
Spring4GWT GWT Spring 使得在 Spring 框架下构造 GWT 应用变得很简单,提供一个易于理解...可以将网络图导出为 GIF, JPEG, PNG, PPM, ARP and PNML (XML based)文件格式。使用了优秀的JHotDraw 5.2 框架。 activemq...
Spring4GWT GWT Spring 使得在 Spring 框架下构造 GWT 应用变得很简单,提供一个易于理解...可以将网络图导出为 GIF, JPEG, PNG, PPM, ARP and PNML (XML based)文件格式。使用了优秀的JHotDraw 5.2 框架。 activemq...
Spring4GWT GWT Spring 使得在 Spring 框架下构造 GWT 应用变得很简单,提供一个易于理解...可以将网络图导出为 GIF, JPEG, PNG, PPM, ARP and PNML (XML based)文件格式。使用了优秀的JHotDraw 5.2 框架。 activemq...
Spring4GWT GWT Spring 使得在 Spring 框架下构造 GWT 应用变得很简单,提供一个易于理解...可以将网络图导出为 GIF, JPEG, PNG, PPM, ARP and PNML (XML based)文件格式。使用了优秀的JHotDraw 5.2 框架。 activemq...
Spring4GWT GWT Spring 使得在 Spring 框架下构造 GWT 应用变得很简单,提供一个易于理解...可以将网络图导出为 GIF, JPEG, PNG, PPM, ARP and PNML (XML based)文件格式。使用了优秀的JHotDraw 5.2 框架。 activemq...
Spring4GWT GWT Spring 使得在 Spring 框架下构造 GWT 应用变得很简单,提供一个易于理解...可以将网络图导出为 GIF, JPEG, PNG, PPM, ARP and PNML (XML based)文件格式。使用了优秀的JHotDraw 5.2 框架。 activemq...