`
fengke86
  • 浏览: 18418 次
  • 来自: ...
社区版块
存档分类
最新评论

(Meng Yan )Map Reduce - the Free Lunch is not over?

阅读更多
微软著名的C++大师Herb Sutter在2005年初的时候曾经写过一篇重量级的文章:”The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software“,预言OO之后软件开发将要面临的又一次重大变革-并行计算。

摩尔定律统制下的软件开发时代有一个非常有意思的现象:”Andy giveth, and Bill taketh away.”。不管CPU的主频有多快,我们始终有办法来利用它,而我们也陶醉在机器升级带来的程序性能提高中。

我记着我大二的时候曾经做过一个五子棋的程序,当时的算法就是预先设计一些棋型(有优先级),然后扫描棋盘,对形势进行分析,看看当前走哪部对自己最重要。当然下棋还要堵别人,这就需要互换双方的棋型再计算。如果只算一步,很可能被狡猾的对手欺骗,所以为了多想几步,还需要递归和回朔。在当时的机器上,算3步就基本上需要3秒左右的时间了。后来大学毕业收拾东西的时候找到这个程序,试了一下,发现算10步需要的时间也基本上感觉不出来了。

不知道你是否有同样的经历,我们不知不觉的一直在享受着这样的免费午餐。可是,随着摩尔定律的提前终结,免费的午餐终究要还回去。虽然硬件设计师还在努力:Hyper Threading CPU(多出一套寄存器,相当于一个逻辑CPU)使得Pipeline尽可能满负荷,使多个Thread的操作有可能并行,使得多线程程序的性能有5%-15%的提升;增加Cache容量也使得包括Single-Thread和Multi-Thread程序都能受益。也许这些还能帮助你一段时间,但问题是,我们必须做出改变,面对这个即将到来的变革,你准备好了么?

Concurrency Programming != Multi-Thread Programming。很多人都会说MultiThreading谁不会,问题是,你是为什么使用/如何使用多线程的?我从前做过一个类似AcdSee一样的图像查看/处理程序,我通常用它来处理我的数码照片。我在里面用了大量的多线程,不过主要目的是在图像处理的时候不要Block住UI,所以将CPU Intensive的计算部分用后台线程进行处理。而并没有把对图像矩阵的运算并行分开。

我觉得Concurrency Programming真正的挑战在于Programming Model的改变,在程序员的脑子里面要对自己的程序怎样并行化有很清楚的认识,更重要的是,如何去实现(包括架构、容错、实时监控等等)这种并行化,如何去调试,如何去测试。

在Google,每天有海量的数据需要在有限的时间内进行处理(其实每个互联网公司都会碰到这样的问题),每个程序员都需要进行分布式的程序开发,这其中包括如何分布、调度、监控以及容错等等。Google的MapReduce正是把分布式的业务逻辑从这些复杂的细节中抽象出来,使得没有或者很少并行开发经验的程序员也能进行并行应用程序的开发。

MapReduce中最重要的两个词就是Map(映射)和Reduce(规约)。初看Map/Reduce这两个词,熟悉Function Language的人一定感觉很熟悉。FP把这样的函数称为”higher order function”(”High order function”被成为Function Programming的利器之一哦),也就是说,这些函数是编写来被与其它函数相结合(或者说被其它函数调用的)。如果说硬要比的化,可以把它想象成C里面的CallBack函数,或者STL里面的Functor。比如你要对一个STL的容器进行查找,需要制定每两个元素相比较的Functor(Comparator),这个Comparator在遍历容器的时候就会被调用。

拿前面说过图像处理程序来举例,其实大多数的图像处理操作都是对图像矩阵进行某种运算。这里的运算通常有两种,一种是映射,一种是规约。拿两种效果来说,”老照片”效果通常是强化照片的G/B值,然后对每个象素加一些随机的偏移,这些操作在二维矩阵上的每一个元素都是独立的,是Map操作。而”雕刻”效果需要提取图像边缘,就需要元素之间的运算了,是一种Reduce操作。再举个简单的例子,一个一维矩阵(数组)[0,1,2,3,4]可以映射为[0,2,3,6,8](乘2),也可以映射为[1,2,3,4,5](加1)。它可以规约为0(元素求积)也可以规约为10(元素求和)。

面对复杂问题,古人教导我们要“分而治之”,英文中对应的词是”Divide and Conquer“。Map/Reduce其实就是Divide/Conquer的过程,通过把问题Divide,使这些Divide后的Map运算高度并行,再将Map后的结果Reduce(根据某一个Key),得到最终的结果。

Googler发现这是问题的核心,其它都是共性问题。因此,他们把MapReduce抽象分离出来。这样,Google的程序员可以只关心应用逻辑,关心根据哪些Key把问题进行分解,哪些操作是Map操作,哪些操作是Reduce操作。其它并行计算中的复杂问题诸如分布、工作调度、容错、机器间通信都交给Map/Reduce Framework去做,很大程度上简化了整个编程模型。

MapReduce的另一个特点是,Map和Reduce的输入和输出都是中间临时文件(MapReduce利用Google文件系统来管理和访问这些文件),而不是不同进程间或者不同机器间的其它通信方式。我觉得,这是Google一贯的风格,化繁为简,返璞归真。

接下来就放下其它,研究一下Map/Reduce操作。(其它比如容错、备份任务也有很经典的经验和实现,论文里面都有详述)

Map的定义:

Map, written by the user, takes an input pair and produces a set of intermediate key/value pairs. The MapReduce library groups together all intermediate values associated with the same intermediate key I and passes them to the Reduce function.

Reduce的定义:

The Reduce function, also written by the user, accepts an intermediate key I and a set of values for that key. It merges together these values to form a possibly smaller set of values. Typically just zero or one output value is produced per Reduce invocation. The intermediate values are supplied to the user’s reduce function via an iterator. This allows us to handle lists of values that are too large to fit in memory.

MapReduce论文中给出了这样一个例子:在一个文档集合中统计每个单词出现的次数。

Map操作的输入是每一篇文档,将输入文档中每一个单词的出现输出到中间文件中去。

map(String key, String value):
    // key: document name
    // value: document contents
    for each word w in value:
        EmitIntermediate(w, “1″);

比如我们有两篇文档,内容分别是

A - “I love programming”

B - “I am a blogger, you are also a blogger”。

B文档经过Map运算后输出的中间文件将会是:

I,1
am,1
a,1
blogger,1
you,1
are,1
a,1
blogger,1
Reduce操作的输入是单词和出现次数的序列。用上面的例子来说,就是 (”I”, [1, 1]), (”love”, [1]), (”programming”, [1]), (”am”, [1]), (”a”, [1,1]) 等。然后根据每个单词,算出总的出现次数。

reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
        result += ParseInt(v);
    Emit(AsString(result));

最后输出的最终结果就会是:(”I”, 2″), (”a”, 2″)……

实际的执行顺序是:

MapReduce Library将Input分成M份。这里的Input Splitter也可以是多台机器并行Split。
Master将M份Job分给Idle状态的M个worker来处理;
对于输入中的每一个<key, value> pair 进行Map操作,将中间结果Buffer在Memory里;
定期的(或者根据内存状态),将Buffer中的中间信息Dump到本地磁盘上,并且把文件信息传回给Master(Master需要把这些信息发送给Reduce worker)。这里最重要的一点是,在写磁盘的时候,需要将中间文件做Partition(比如R个)。拿上面的例子来举例,如果把所有的信息存到一个文件,Reduce worker又会变成瓶颈。我们只需要保证相同Key能出现在同一个Partition里面就可以把这个问题分解。
R个Reduce worker开始工作,从不同的Map worker的Partition那里拿到数据(read the buffered data from the local disks of the map workers),用key进行排序(如果内存中放不下需要用到外部排序 - external sort)。很显然,排序(或者说Group)是Reduce函数之前必须做的一步。 这里面很关键的是,每个Reduce worker会去从很多Map worker那里拿到X(0<X<R) Partition的中间结果,这样,所有属于这个Key的信息已经都在这个worker上了。
Reduce worker遍历中间数据,对每一个唯一Key,执行Reduce函数(参数是这个key以及相对应的一系列Value)。
执行完毕后,唤醒用户程序,返回结果(最后应该有R份Output,每个Reduce Worker一个)。
可见,这里的分(Divide)体现在两步,分别是将输入分成M份,以及将Map的中间结果分成R份。将输入分开通常很简单,Map的中间结果通常用”hash(key) mod R”这个结果作为标准,保证相同的Key出现在同一个Partition里面。当然,使用者也可以指定自己的Partition Function,比如,对于Url Key,如果希望同一个Host的URL出现在同一个Partition,可以用”hash(Hostname(urlkey)) mod R”作为Partition Function。

对于上面的例子来说,每个文档中都可能会出现成千上万的 (”the”, 1)这样的中间结果,琐碎的中间文件必然导致传输上的损失。因此,MapReduce还支持用户提供Combiner Function。这个函数通常与Reduce Function有相同的实现,不同点在于Reduce函数的输出是最终结果,而Combiner函数的输出是Reduce函数的某一个输入的中间文件。

Tom White给出了Nutch[2]中另一个很直观的例子,分布式Grep。我一直觉得,Pipe中的很多操作,比如More、Grep、Cat都类似于一种Map操作,而Sort、Uniq、wc等都相当于某种Reduce操作。

加上前两天Google刚刚发布的BigTable论文,现在Google有了自己的集群 - Googel Cluster,分布式文件系统 - GFS,分布式计算环境 - MapReduce,分布式结构化存储 - BigTable,再加上Lock Service。我真的能感觉的到Google著名的免费晚餐之外的对于程序员的另一种免费的晚餐,那个由大量的commodity PC组成的large clusters。我觉得这些才真正是Google的核心价值所在。

呵呵,就像微软老兵Joel Spolsky(你应该看过他的”Joel on Software”吧?)曾经说过,对于微软来说最可怕的是[1],微软还在苦苦追赶Google来完善Search功能的时候,Google已经在部署下一代的超级计算机了。

The very fact that Google invented MapReduce, and Microsoft didn’t, says something about why Microsoft is still playing catch up trying to get basic search features to work, while Google has moved on to the next problem: building Skynet^H^H^H^H^H^H the world’s largest massively parallel supercomputer. I don’t think Microsoft completely understands just how far behind they are on that wave.

注1:其实,微软也有自己的方案 - DryAd。问题是,大公司里,要想重新部署这样一个底层的InfraStructure,无论是技术的原因,还是政治的原因,将是如何的难。

注2:Lucene之父Doug Cutting的又一力作,Project Hadoop - 由Hadoop分布式文件系统和一个Map/Reduce的实现组成,Lucene/Nutch的成产线也够齐全的了。
分享到:
评论

相关推荐

    智能车竞赛介绍(竞赛目标和赛程安排).zip

    全国大学生智能汽车竞赛自2006年起,由教育部高等教育司委托高等学校自动化类教学指导委员会举办,旨在加强学生实践、创新能力和培养团队精神的一项创意性科技竞赛。该竞赛至今已成功举办多届,吸引了众多高校学生的积极参与,此文件为智能车竞赛介绍

    集字卡v4.3.4微信公众号原版三种UI+关键字卡控制+支持强制关注.zip

    字卡v4.3.4 原版 三种UI+关键字卡控制+支持获取用户信息+支持强制关注 集卡模块从一开始的版本到助力版本再到现在的新规则版本。 集卡模块难度主要在于 如何控制各种不同的字卡组合 被粉丝集齐的数量。 如果不控制那么一定会出现超过数量的粉丝集到指定的字卡组合,造成奖品不够的混乱,如果大奖价值高的话,超过数量的粉丝集到大奖后,就造成商家的活动费用超支了。我们冥思苦想如何才能限制集到指定字卡组合的粉丝数,后我们想到了和支付宝一样的选一张关键字卡来进行规则设置的方式来进行限制,根据奖品所需的关键字卡数,设定规则就可以控制每种奖品所需字卡组合被粉丝集到的数量,规则可以在活动进行中根据需要进行修改,活动规则灵活度高。新版的集卡规则,在此次政府发布号的活动中经受了考验,集到指定字卡组合的粉丝没有超出规则限制。有了这个规则限制后,您无需盯着活动,建好活动后就无人值守让活动进行就行了,您只需要时不时来看下蹭蹭上涨的活动数据即可。 被封? 无需担心,模块内置有防封功能,支持隐藏主域名,显示炮灰域名,保护活动安全进行。 活动准备? 只需要您有一个认证服务号即可,支持订阅号借用认证服务号来做活动。如果您

    出口设备线体程序详解:PLC通讯下的V90控制与开源FB284工艺对象实战指南,出口设备线体程序详解:PLC通讯与V90控制集成,工艺对象与FB284协同工作,开源学习V90控制技能,出口设备1200

    出口设备线体程序详解:PLC通讯下的V90控制与开源FB284工艺对象实战指南,出口设备线体程序详解:PLC通讯与V90控制集成,工艺对象与FB284协同工作,开源学习V90控制技能,出口设备1200线体程序,多个plc走通讯,内部有多个v90,采用工艺对象与fb284 共同控制,功能快全部开源,能快速学会v90的控制 ,出口设备; 1200线体程序; PLC通讯; 多个V90; 工艺对象; FB284; 功能开源; V90控制。,V90工艺控制:开源功能快,快速掌握1200线体程序与PLC通讯

    基于Arduino与DAC8031的心电信号模拟器资料:心电信号与正弦波的双重输出应用方案,Arduino与DAC8031心电信号模拟器:生成心电信号与正弦波输出功能详解,基于arduino +DAC

    基于Arduino与DAC8031的心电信号模拟器资料:心电信号与正弦波的双重输出应用方案,Arduino与DAC8031心电信号模拟器:生成心电信号与正弦波输出功能详解,基于arduino +DAC8031的心电信号模拟器资料,可输出心电信号,和正弦波 ,基于Arduino;DAC8031;心电信号模拟器;输出心电信号;正弦波输出;模拟器资料,基于Arduino与DAC8031的心电信号模拟器:输出心电与正弦波

    (参考项目)MATLAB口罩识别检测.zip

    MATLAB口罩检测的基本流程 图像采集:通过摄像头或其他图像采集设备获取包含面部的图像。 图像预处理:对采集到的图像进行灰度化、去噪、直方图均衡化等预处理操作,以提高图像质量,便于后续的人脸检测和口罩检测。 人脸检测:利用Haar特征、LBP特征等经典方法或深度学习模型(如MTCNN、FaceBoxes等)在预处理后的图像中定位人脸区域。 口罩检测:在检测到的人脸区域内,进一步分析是否佩戴口罩。这可以通过检测口罩的边缘、纹理等特征,或使用已经训练好的口罩检测模型来实现。 结果输出:将检测结果以可视化方式展示,如在图像上标注人脸和口罩区域,或输出文字提示是否佩戴口罩。

    kernel-debug-devel-3.10.0-1160.119.1.el7.x64-86.rpm.tar.gz

    1、文件内容:kernel-debug-devel-3.10.0-1160.119.1.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/kernel-debug-devel-3.10.0-1160.119.1.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊

    day02供应链管理系统-补充.zip

    该文档提供了一个关于供应链管理系统开发的详细指南,重点介绍了项目安排、技术实现和框架搭建的相关内容。 文档分为以下几个关键部分: 项目安排:主要步骤包括搭建框架(1天),基础数据模块和权限管理(4天),以及应收应付和销售管理(5天)。 供应链概念:供应链系统的核心流程是通过采购商品放入仓库,并在销售时从仓库提取商品,涉及三个主要订单:采购订单、销售订单和调拨订单。 大数据的应用:介绍了数据挖掘、ETL(数据抽取)和BI(商业智能)在供应链管理中的应用。 技术实现:讲述了DAO(数据访问对象)的重用、服务层的重用、以及前端JS的继承机制、jQuery插件开发等技术细节。 系统框架搭建:包括Maven环境的配置、Web工程的创建、持久化类和映射文件的编写,以及Spring配置文件的实现。 DAO的需求和功能:供应链管理系统的各个模块都涉及分页查询、条件查询、删除、增加、修改操作等需求。 泛型的应用:通过示例说明了在Java语言中如何使用泛型来实现模块化和可扩展性。 文档非常技术导向,适合开发人员参考,用于构建供应链管理系统的架构和功能模块。

    基于四旋翼无人机的PD控制研究 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    C#与VB实现欧姆龙PLC的Fins TCP通信案例源码:调用动态链接库进行数据读写,定时器与计数器数据区的简洁读写操作示例,C#与VB实现欧姆龙PLC的Fins TCP通信案例源码:调用动态链接库进

    C#与VB实现欧姆龙PLC的Fins TCP通信案例源码:调用动态链接库进行数据读写,定时器与计数器数据区的简洁读写操作示例,C#与VB实现欧姆龙PLC的Fins TCP通信案例源码:调用动态链接库进行读写操作,涵盖定时器计数器数据区学习案例,C#欧姆龙plc Fins Tcp通信案例上位机源码,有c#和VB的Demo,c#上位机和欧姆龙plc通讯案例源码,调用动态链接库,可以实现上位机的数据连接,可以简单实现D区W区定时器计数器等数据区的读写,是一个非常好的学习案例 ,C#; 欧姆龙PLC; Fins Tcp通信; 上位机源码; 动态链接库; 数据连接; D区W区读写; 定时器计数器; 学习案例,C#实现欧姆龙PLC Fins Tcp通信上位机源码,读写数据区高效学习案例

    可调谐石墨烯超材料吸收体的FDTD仿真模拟研究报告:吸收光谱的化学势调节策略与仿真源文件解析,可调谐石墨烯超材料吸收体:化学势调节光谱的FDTD仿真模拟研究,可调谐石墨烯超材料吸收体FDTD仿真模拟

    可调谐石墨烯超材料吸收体的FDTD仿真模拟研究报告:吸收光谱的化学势调节策略与仿真源文件解析,可调谐石墨烯超材料吸收体:化学势调节光谱的FDTD仿真模拟研究,可调谐石墨烯超材料吸收体FDTD仿真模拟 【案例内容】该案例提供了一种可调谐石墨烯超材料吸收体,其吸收光谱可以通过改变施加于石墨烯的化学势来进行调节。 【案例文件】仿真源文件 ,可调谐石墨烯超材料吸收体; FDTD仿真模拟; 化学势调节; 仿真源文件,石墨烯超材料吸收体:FDTD仿真调节吸收光谱案例解析

    RBF神经网络控制仿真-第二版

    RBF神经网络控制仿真-第二版

    松下PLC与威纶通触摸屏转盘设备控制:FPWINPRO7与EBPRO智能编程与宏指令应用,松下PLC与威纶通触摸屏转盘设备控制解决方案:FPWINPRO7与EBPRO协同工作,实现多工位转盘加工与IE

    松下PLC与威纶通触摸屏转盘设备控制:FPWINPRO7与EBPRO智能编程与宏指令应用,松下PLC与威纶通触摸屏转盘设备控制解决方案:FPWINPRO7与EBPRO协同工作,实现多工位转盘加工与IEC编程模式控制,松下PLC+威纶通触摸屏的转盘设备 松下PLC工程使用程序版本为FPWINPRO7 7.6.0.0版本 威纶通HMI工程使用程序版本为EBPRO 6.07.02.410S 1.多工位转盘加工控制。 2.国际标准IEC编程模式。 3.触摸屏宏指令应用控制。 ,松下PLC; 威纶通触摸屏; 转盘设备控制; 多工位加工控制; IEC编程模式; 触摸屏宏指令应用,松下PLC与威纶通HMI联控的转盘设备控制程序解析

    基于循环神经网络(RNN)的多输入单输出预测模型(适用于时间序列预测与回归分析,需Matlab 2021及以上版本),基于循环神经网络(RNN)的多输入单输出预测模型(matlab版本2021+),真

    基于循环神经网络(RNN)的多输入单输出预测模型(适用于时间序列预测与回归分析,需Matlab 2021及以上版本),基于循环神经网络(RNN)的多输入单输出预测模型(matlab版本2021+),真实值与预测值对比,多种评价指标与线性拟合展示。,RNN预测模型做多输入单输出预测模型,直接替数据就可以用。 程序语言是matlab,需求最低版本为2021及以上。 程序可以出真实值和预测值对比图,线性拟合图,可打印多种评价指标。 PS:以下效果图为测试数据的效果图,主要目的是为了显示程序运行可以出的结果图,具体预测效果以个人的具体数据为准。 2.由于每个人的数据都是独一无二的,因此无法做到可以任何人的数据直接替就可以得到自己满意的效果。 这段程序主要是一个基于循环神经网络(RNN)的预测模型。它的应用领域可以是时间序列预测、回归分析等。下面我将对程序的运行过程进行详细解释和分析。 首先,程序开始时清空环境变量、关闭图窗、清空变量和命令行。然后,通过xlsread函数导入数据,其中'数据的输入'和'数据的输出'是两个Excel文件的文件名。 接下来,程序对数据进行归一化处理。首先使用ma

    【图像识别】手写文字识别研究 附Matlab代码+运行结果.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    旅游管理系统(基于springboot,mysql,java).zip

    旅游管理系统中的功能模块主要是实现管理员;首页、个人中心、用户管理、旅游方案管理、旅游购买管理、系统管理,用户;首页、个人中心、旅游方案管理、旅游购买管理、我的收藏管理。前台首页;首页、旅游方案、旅游资讯、个人中心、后台管理等功能。经过认真细致的研究,精心准备和规划,最后测试成功,系统可以正常使用。分析功能调整与旅游管理系统实现的实际需求相结合,讨论了Java开发旅游管理系统的使用。 从上面的描述中可以基本可以实现软件的功能: 1、开发实现旅游管理系统的整个系统程序;  2、管理员;首页、个人中心、用户管理、旅游方案管理、旅游购买管理、系统管理等。 3、用户:首页、个人中心、旅游方案管理、旅游购买管理、我的收藏管理。 4、前台首页:首页、旅游方案、旅游资讯、个人中心、后台管理等相应操作; 5、基础数据管理:实现系统基本信息的添加、修改及删除等操作,并且根据需求进行交流查看及回复相应操作。

    Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基

    Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构,Simulink建模,MPPT最大功率点追踪,扰动观察法采用功率反馈方式,若ΔP>0,说明电压调整的方向正确,可以继续按原方向进行“干扰”;若ΔP<0,说明电压调整的方向错误,需要对“干扰”的方向进行改变。 ,Boost升压;光伏并网结构;Simulink建模;MPPT最大功率点追踪;扰动观察法;功率反馈;电压调整方向。,光伏并网结构中Boost升压MPPT控制策略的Simulink建模与功率反馈扰动观察法

    基于matlab平台的图像去雾设计.zip

    运行GUI版本,可二开

    Deepseek相关参考资源文档

    Deepseek相关主题资源及行业影响

    WP Smush Pro3.16.12 一款专为 WordPress 网站设计的图像优化插件开心版.zip

    WP Smush Pro 是一款专为 WordPress 网站设计的图像优化插件。 一、主要作用 图像压缩 它能够在不影响图像质量的前提下,大幅度减小图像文件的大小。例如,对于一些高分辨率的产品图片或者风景照片,它可以通过先进的压缩算法,去除图像中多余的数据。通常 JPEG 格式的图像经过压缩后,文件大小可以减少 40% – 70% 左右。这对于网站性能优化非常关键,因为较小的图像文件可以加快网站的加载速度。 该插件支持多种图像格式的压缩,包括 JPEG、PNG 和 GIF。对于 PNG 图像,它可以在保留透明度等关键特性的同时,有效地减小文件尺寸。对于 GIF 图像,也能在一定程度上优化文件大小,减少动画 GIF 的加载时间。 懒加载 WP Smush Pro 实现了图像懒加载功能。懒加载是一种延迟加载图像的技术,当用户滚动页面到包含图像的位置时,图像才会加载。这样可以避免一次性加载大量图像,尤其是在页面内容较多且包含许多图像的情况下。例如,在一个新闻网站的长文章页面,带有大量配图,懒加载可以让用户在浏览文章开头部分时,不需要等待所有图片加载,从而提高页面的初始加载速度,同时也能

    1. Download this file: https://cdn-media.huggingface.co/frpc-gradio-0.3/frpc-windows-amd64.exe

    Could not create share link. Missing file: C:\Users\xx\.conda\envs\omni\Lib\site-packages\gradio\frpc_windows_amd64_v0.3 1. Download this file: https://cdn-media.huggingface.co/frpc-gradio-0.3/frpc_windows_amd64.exe 2. Rename the downloaded file to: frpc_windows_amd64_v0.3 3. Move the file to this location: C:\Users\xx\.conda\envs\omni\Lib\site-packages\gradio

Global site tag (gtag.js) - Google Analytics