- 浏览: 445868 次
- 性别:
- 来自: 杭州
文章分类
- 全部博客 (162)
- easymock (3)
- 模板引擎 (3)
- JForum (4)
- web (9)
- spring (10)
- java (20)
- struts (9)
- uml (3)
- java pattern (19)
- JQuery (14)
- 多线程 (13)
- database (21)
- PS (3)
- ejb (6)
- 版本管理 svn , maven , ant (2)
- protocol (1)
- 测试 (1)
- ws (7)
- Apache (4)
- 脚本语言 (1)
- guice (1)
- 分布式 (4)
- 架构 (0)
- 经验 (1)
- 版本管理 svn (1)
- maven (1)
- ant (1)
- 书籍 (1)
- Linux (1)
最新评论
-
Master-Gao:
稍微明白了点,,有点萌萌哒
为什么匿名内部类参数必须为final类型 -
waw0931:
终于明白了,谢谢!
为什么匿名内部类参数必须为final类型 -
十三圆桌骑士:
提供了两个链接还是有用的。
安装Mondrian -
放方芳:
[flash=200,200][/flash]
Freemarker标签使用 -
放方芳:
[b][/b]
Freemarker标签使用
前文(深入JVM锁机制-synchronized)分析了JVM中的synchronized实现,本文继续分析JVM中的另一种锁Lock的实现。与synchronized不同的是,Lock完全用Java写成,在java这个层面是无关JVM实现的。
在java.util.concurrent.locks包中有很多Lock的实现类,常用的有ReentrantLock、ReadWriteLock(实现类ReentrantReadWriteLock),其实现都依赖java.util.concurrent.AbstractQueuedSynchronizer类,实现思路都大同小异,因此我们以ReentrantLock作为讲解切入点。
1. ReentrantLock的调用过程
经过观察ReentrantLock把所有Lock接口的操作都委派到一个Sync类上,该类继承了AbstractQueuedSynchronizer:
- static abstract class Sync extends AbstractQueuedSynchronizer
Sync又有两个子类:
- final static class NonfairSync extends Sync
- final static class FairSync extends Sync
显然是为了支持公平锁和非公平锁而定义,默认情况下为非公平锁。
先理一下Reentrant.lock()方法的调用过程(默认非公平锁):
这些讨厌的Template模式导致很难直观的看到整个调用过程,其实通过上面调用过程及AbstractQueuedSynchronizer的注释可以发现,AbstractQueuedSynchronizer中抽象了绝大多数Lock的功能,而只把tryAcquire方法延迟到子类中实现。tryAcquire方法的语义在于用具体子类判断请求线程是否可以获得锁,无论成功与否AbstractQueuedSynchronizer都将处理后面的流程。
2. 锁实现(加锁)
简单说来,AbstractQueuedSynchronizer会把所有的请求线程构成一个CLH队列,当一个线程执行完毕(lock.unlock())时会激活自己的后继节点,但正在执行的线程并不在队列中,而那些等待执行的线程全部处于阻塞状态,经过调查线程的显式阻塞是通过调用LockSupport.park()完成,而LockSupport.park()则调用sun.misc.Unsafe.park()本地方法,再进一步,HotSpot在Linux中中通过调用pthread_mutex_lock函数把线程交给系统内核进行阻塞。
该队列如图:
与synchronized相同的是,这也是一个虚拟队列,不存在队列实例,仅存在节点之间的前后关系。令人疑惑的是为什么采用CLH队列呢?原生的CLH队列是用于自旋锁,但Doug Lea把其改造为阻塞锁。
当有线程竞争锁时,该线程会首先尝试获得锁,这对于那些已经在队列中排队的线程来说显得不公平,这也是非公平锁的由来,与synchronized实现类似,这样会极大提高吞吐量。
如果已经存在Running线程,则新的竞争线程会被追加到队尾,具体是采用基于CAS的Lock-Free算法,因为线程并发对Tail调用CAS可能会导致其他线程CAS失败,解决办法是循环CAS直至成功。AbstractQueuedSynchronizer的实现非常精巧,令人叹为观止,不入细节难以完全领会其精髓,下面详细说明实现过程:
2.1 Sync.nonfairTryAcquire
nonfairTryAcquire方法将是lock方法间接调用的第一个方法,每次请求锁时都会首先调用该方法。
- final boolean nonfairTryAcquire(int acquires) {
- final Thread current = Thread.currentThread();
- int c = getState();
- if (c == 0) {
- if (compareAndSetState(0, acquires)) {
- setExclusiveOwnerThread(current);
- return true;
- }
- }
- else if (current == getExclusiveOwnerThread()) {
- int nextc = c + acquires;
- if (nextc < 0) // overflow
- throw new Error("Maximum lock count exceeded");
- setState(nextc);
- return true;
- }
- return false;
- }
该方法会首先判断当前状态,如果c==0说明没有线程正在竞争该锁,如果不c !=0 说明有线程正拥有了该锁。
如果发现c==0,则通过CAS设置该状态值为acquires,acquires的初始调用值为1,每次线程重入该锁都会+1,每次unlock都会-1,但为0时释放锁。如果CAS设置成功,则可以预计其他任何线程调用CAS都不会再成功,也就认为当前线程得到了该锁,也作为Running线程,很显然这个Running线程并未进入等待队列。
如果c !=0 但发现自己已经拥有锁,只是简单地++acquires,并修改status值,但因为没有竞争,所以通过setStatus修改,而非CAS,也就是说这段代码实现了偏向锁的功能,并且实现的非常漂亮。
2.2 AbstractQueuedSynchronizer.addWaiter
addWaiter方法负责把当前无法获得锁的线程包装为一个Node添加到队尾:
- private Node addWaiter(Node mode) {
- Node node = new Node(Thread.currentThread(), mode);
- // Try the fast path of enq; backup to full enq on failure
- Node pred = tail;
- if (pred != null) {
- node.prev = pred;
- if (compareAndSetTail(pred, node)) {
- pred.next = node;
- return node;
- }
- }
- enq(node);
- return node;
- }
其中参数mode是独占锁还是共享锁,默认为null,独占锁。追加到队尾的动作分两步:
- 如果当前队尾已经存在(tail!=null),则使用CAS把当前线程更新为Tail
- 如果当前Tail为null或则线程调用CAS设置队尾失败,则通过enq方法继续设置Tail
下面是enq方法:
- private Node enq(final Node node) {
- for (;;) {
- Node t = tail;
- if (t == null) { // Must initialize
- Node h = new Node(); // Dummy header
- h.next = node;
- node.prev = h;
- if (compareAndSetHead(h)) {
- tail = node;
- return h;
- }
- }
- else {
- node.prev = t;
- if (compareAndSetTail(t, node)) {
- t.next = node;
- return t;
- }
- }
- }
- }
该方法就是循环调用CAS,即使有高并发的场景,无限循环将会最终成功把当前线程追加到队尾(或设置队头)。总而言之,addWaiter的目的就是通过CAS把当前现在追加到队尾,并返回包装后的Node实例。
把线程要包装为Node对象的主要原因,除了用Node构造供虚拟队列外,还用Node包装了各种线程状态,这些状态被精心设计为一些数字值:
- SIGNAL(-1) :线程的后继线程正/已被阻塞,当该线程release或cancel时要重新这个后继线程(unpark)
- CANCELLED(1):因为超时或中断,该线程已经被取消
- CONDITION(-2):表明该线程被处于条件队列,就是因为调用了Condition.await而被阻塞
- PROPAGATE(-3):传播共享锁
- 0:0代表无状态
2.3 AbstractQueuedSynchronizer.acquireQueued
acquireQueued的主要作用是把已经追加到队列的线程节点(addWaiter方法返回值)进行阻塞,但阻塞前又通过tryAccquire重试是否能获得锁,如果重试成功能则无需阻塞,直接返回
- final boolean acquireQueued(final Node node, int arg) {
- try {
- boolean interrupted = false;
- for (;;) {
- final Node p = node.predecessor();
- if (p == head && tryAcquire(arg)) {
- setHead(node);
- p.next = null; // help GC
- return interrupted;
- }
- if (shouldParkAfterFailedAcquire(p, node) &&
- parkAndCheckInterrupt())
- interrupted = true;
- }
- } catch (RuntimeException ex) {
- cancelAcquire(node);
- throw ex;
- }
- }
仔细看看这个方法是个无限循环,感觉如果p == head && tryAcquire(arg)条件不满足循环将永远无法结束,当然不会出现死循环,奥秘在于第12行的parkAndCheckInterrupt会把当前线程挂起,从而阻塞住线程的调用栈。
- private final boolean parkAndCheckInterrupt() {
- LockSupport.park(this);
- return Thread.interrupted();
- }
如前面所述,LockSupport.park最终把线程交给系统(Linux)内核进行阻塞。当然也不是马上把请求不到锁的线程进行阻塞,还要检查该线程的状态,比如如果该线程处于Cancel状态则没有必要,具体的检查在shouldParkAfterFailedAcquire中:
- private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
- int ws = pred.waitStatus;
- if (ws == Node.SIGNAL)
- /*
- * This node has already set status asking a release
- * to signal it, so it can safely park
- */
- return true;
- if (ws > 0) {
- /*
- * Predecessor was cancelled. Skip over predecessors and
- * indicate retry.
- */
- do {
- node.prev = pred = pred.prev;
- } while (pred.waitStatus > 0);
- pred.next = node;
- } else {
- /*
- * waitStatus must be 0 or PROPAGATE. Indicate that we
- * need a signal, but don't park yet. Caller will need to
- * retry to make sure it cannot acquire before parking.
- */
- compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
- }
- return false;
- }
检查原则在于:
- 规则1:如果前继的节点状态为SIGNAL,表明当前节点需要unpark,则返回成功,此时acquireQueued方法的第12行(parkAndCheckInterrupt)将导致线程阻塞
- 规则2:如果前继节点状态为CANCELLED(ws>0),说明前置节点已经被放弃,则回溯到一个非取消的前继节点,返回false,acquireQueued方法的无限循环将递归调用该方法,直至规则1返回true,导致线程阻塞
- 规则3:如果前继节点状态为非SIGNAL、非CANCELLED,则设置前继的状态为SIGNAL,返回false后进入acquireQueued的无限循环,与规则2同
总体看来,shouldParkAfterFailedAcquire就是靠前继节点判断当前线程是否应该被阻塞,如果前继节点处于CANCELLED状态,则顺便删除这些节点重新构造队列。
至此,锁住线程的逻辑已经完成,下面讨论解锁的过程。
3. 解锁
请求锁不成功的线程会被挂起在acquireQueued方法的第12行,12行以后的代码必须等线程被解锁锁才能执行,假如被阻塞的线程得到解锁,则执行第13行,即设置interrupted = true,之后又进入无限循环。
从无限循环的代码可以看出,并不是得到解锁的线程一定能获得锁,必须在第6行中调用tryAccquire重新竞争,因为锁是非公平的,有可能被新加入的线程获得,从而导致刚被唤醒的线程再次被阻塞,这个细节充分体现了“非公平”的精髓。通过之后将要介绍的解锁机制会看到,第一个被解锁的线程就是Head,因此p == head的判断基本都会成功。
至此可以看到,把tryAcquire方法延迟到子类中实现的做法非常精妙并具有极强的可扩展性,令人叹为观止!当然精妙的不是这个Templae设计模式,而是Doug Lea对锁结构的精心布局。
解锁代码相对简单,主要体现在AbstractQueuedSynchronizer.release和Sync.tryRelease方法中:
class AbstractQueuedSynchronizer
- public final boolean release(int arg) {
- if (tryRelease(arg)) {
- Node h = head;
- if (h != null && h.waitStatus != 0)
- unparkSuccessor(h);
- return true;
- }
- return false;
- }
class Sync
- protected final boolean tryRelease(int releases) {
- int c = getState() - releases;
- if (Thread.currentThread() != getExclusiveOwnerThread())
- throw new IllegalMonitorStateException();
- boolean free = false;
- if (c == 0) {
- free = true;
- setExclusiveOwnerThread(null);
- }
- setState(c);
- return free;
- }
tryRelease与tryAcquire语义相同,把如何释放的逻辑延迟到子类中。tryRelease语义很明确:如果线程多次锁定,则进行多次释放,直至status==0则真正释放锁,所谓释放锁即设置status为0,因为无竞争所以没有使用CAS。
release的语义在于:如果可以释放锁,则唤醒队列第一个线程(Head),具体唤醒代码如下:
- private void unparkSuccessor(Node node) {
- /*
- * If status is negative (i.e., possibly needing signal) try
- * to clear in anticipation of signalling. It is OK if this
- * fails or if status is changed by waiting thread.
- */
- int ws = node.waitStatus;
- if (ws < 0)
- compareAndSetWaitStatus(node, ws, 0);
- /*
- * Thread to unpark is held in successor, which is normally
- * just the next node. But if cancelled or apparently null,
- * traverse backwards from tail to find the actual
- * non-cancelled successor.
- */
- Node s = node.next;
- if (s == null || s.waitStatus > 0) {
- s = null;
- for (Node t = tail; t != null && t != node; t = t.prev)
- if (t.waitStatus <= 0)
- s = t;
- }
- if (s != null)
- LockSupport.unpark(s.thread);
- }
这段代码的意思在于找出第一个可以unpark的线程,一般说来head.next == head,Head就是第一个线程,但Head.next可能被取消或被置为null,因此比较稳妥的办法是从后往前找第一个可用线程。貌似回溯会导致性能降低,其实这个发生的几率很小,所以不会有性能影响。之后便是通知系统内核继续该线程,在Linux下是通过pthread_mutex_unlock完成。之后,被解锁的线程进入上面所说的重新竞争状态。
4. Lock VS Synchronized
AbstractQueuedSynchronizer通过构造一个基于阻塞的CLH队列容纳所有的阻塞线程,而对该队列的操作均通过Lock-Free(CAS)操作,但对已经获得锁的线程而言,ReentrantLock实现了偏向锁的功能。
synchronized的底层也是一个基于CAS操作的等待队列,但JVM实现的更精细,把等待队列分为ContentionList和EntryList,目的是为了降低线程的出列速度;当然也实现了偏向锁,从数据结构来说二者设计没有本质区别。但synchronized还实现了自旋锁,并针对不同的系统和硬件体系进行了优化,而Lock则完全依靠系统阻塞挂起等待线程。
当然Lock比synchronized更适合在应用层扩展,可以继承AbstractQueuedSynchronizer定义各种实现,比如实现读写锁(ReadWriteLock),公平或不公平锁;同时,Lock对应的Condition也比wait/notify要方便的多、灵活的多。
转自:http://blog.csdn.net/chen77716/article/details/6641477
发表评论
-
深入浅出Java并发包—锁机制(转)
2014-07-30 13:11 1071前面我们看到了Lock和synchronized都能正常的保 ... -
自旋锁、排队自旋锁、MCS锁、CLH锁(转)
2014-07-30 12:42 1021自旋锁(Spin lock) 自旋锁是指当一个线程尝试获取 ... -
java线程池
2014-07-28 10:05 501一 简介 线程的使用 ... -
多线程之false sharing问题(转)
2014-07-22 14:17 1135在多核快速发展的现在,利用多线程技术提高CPU设备的利用率已 ... -
线程状态
2013-08-26 16:17 685图中“等待队列” 可替换成 “等待池状态 ... -
如何中断线程
2013-01-03 14:13 998package cn.com.york.concurrency ... -
锁机制(三)(转)
2013-01-03 10:32 2746不同的角度理解(^_^) 在理解J.U.C原理以及锁机制之前 ... -
锁机制(一)-synchronized(转)
2013-01-03 10:25 1400目前在Java中存在两种锁 ... -
如何充分利用多核CPU,计算很大的List中所有整数的和
2012-10-11 12:45 1174引用 前几天在网上看到一个淘宝的面试题:有一个很大的整 ... -
JAVA 多线程
2012-04-26 17:52 1122JDK5中的一个亮点就是将Doug Lea的并发库引入到Jav ... -
ConcurrentHashMap原理分析
2012-02-13 18:50 1315集合是编程中最常用的 ... -
深入研究java.lang.ThreadLocal类(转)
2011-05-26 21:19 898深入研究java.lang.ThreadLocal类 ...
相关推荐
#### 二、MyISAM锁机制 **1、基础描述** MyISAM引擎采用表级锁,其特点是在读操作时不会阻止其他线程对同一表的读请求,但在写操作时会阻塞其他线程的读写请求。这种锁机制使得读写操作之间以及写写操作之间呈串行...
在Laravel框架中,"laravel-lock"是一个重要的扩展包,它增强了框架的锁定机制,提供了多样化的锁定驱动程序和额外的功能。这个扩展包的主要目标是帮助开发者在并发环境中更有效地管理和协调资源,确保数据的一致性...
这个名为“distributed-lock-seckill.zip”的压缩包很可能包含了实现这种秒杀场景的Java源代码,旨在演示如何利用分布式锁来解决秒杀过程中的问题。 首先,我们需要理解分布式锁的概念。分布式锁是在分布式系统中,...
它减少了开发者在理解和实现分布式锁机制上的工作量,同时具备智能的锁超时管理,以适应各种复杂的并发控制需求。通过引入这个starter,开发者可以更专注于业务逻辑,而不用担心底层并发控制的实现细节。
这个库利用文件描述符(File Descriptor)来实现锁机制,确保在多个进程或线程访问同一文件时,能正确地进行互斥控制,防止数据冲突和不一致性。 文件描述符在操作系统中是一种用于标识和访问打开文件的抽象表示。...
总的来说,Android-lockpattern v3的源码揭示了图案解锁机制的复杂性和精细设计。开发者通过深入研究,可以了解到如何实现一个安全且用户体验良好的图形解锁系统,同时也能获取到关于触摸事件处理、视图绘制、数据...
总的来说,`android-lockpattern`项目是Android系统中图形解锁机制的重要组成部分,它的源代码为我们揭示了图形解锁背后的工作原理,对于理解和开发安全验证功能具有很高的参考价值。通过学习和研究这个项目,开发者...
if ($this->lock->get('critical_operation')->block(5)) { // 执行关键操作 // ... $this->lock->release('critical_operation'); } else { // 锁未获取成功,处理超时或并发冲突 // ... } } ``` 这里的`...
本项目中的“springboot-redis-lock-master”可能包含了这些结构,以及启动类、配置文件、业务代码等。 7. **实战步骤**: - 配置Redis连接:在application.properties或application.yml中设置Redis的连接信息。 ...
通过学习和应用devin_h5_lock-master项目,我们可以了解到如何在Web应用中集成手势解锁功能,提升用户体验。 一、devin_h5_lock-master项目简介 "devin_h5_lock-master"是一个包含所有源代码和资源的压缩包,主要由...
这个插件的出现,使得在基于 Cordova 的安卓应用中添加安全的用户解锁机制变得简单易行。 在移动开发领域,尤其是在涉及用户隐私和数据安全的应用中,用户验证是必不可少的一环。传统的密码解锁方式可能会因为易忘...
`django-db-lock`是针对Django的一个实用库,它提供了数据库级别的锁机制,帮助开发者解决并发控制问题,特别是在处理多用户同时操作同一资源时,确保数据的一致性和完整性。 ### Django框架 Django是一个开源的、...
"lock拓展,基于django的内置cache,django-cache-lock-master.zip" 提供了一种利用Django内置缓存系统实现分布式锁的解决方案。 Django的内置缓存系统支持多种后端,如内存缓存(如locmem、Redis)、数据库缓存以及...
2. **Laravel的锁机制** Laravel通过其服务容器和事件系统提供了多种方式来实现锁。其中,"Laravel开发-lock"是专门针对并发锁的一个扩展,它允许开发者在应用中轻松地引入分布式锁,如Redis和Memcached,这两种都是...
标题中的"Python库 | django-admin-page-lock-2.0.0.tar.gz"表明这是一个基于Python的库,专门针对Django框架设计,用于管理后台页面锁定功能。这个版本是2.0.0,以tar.gz格式压缩。从描述中我们可以确认,资源的...
在Emacs中,字体锁(font lock)机制是用于为源代码提供颜色突出显示的功能,它根据代码的不同部分(如关键字、变量、字符串等)应用不同的字体样式。modern-cpp-font-lock就是针对C++语言定制的字体锁模式,增强了...
除了基本的锁机制,`await-lock`还支持"委托生成器函数"(Delegated Generator)。这是一种高级用法,允许你定义一个生成器函数,该函数可以捕获并处理锁的释放,这在处理复杂异步流程时非常有用。生成器函数可以...
标题"PyPI 官网下载 | django-lock-tokens-0.1.3.tar.gz"表明这是一个从Python Package Index (PyPI) 官方网站获取的软件包,具体是django-lock-tokens的0.1.3版本,以tar.gz格式压缩。PyPI是Python开发者发布自己...
2. **防锁定机制**:防锁定功能可能是指在虚拟桌面环境中,用户不会因为误操作或其他原因导致桌面环境被锁死。例如,如果一个应用程序崩溃或无响应,用户可以在不关闭整个桌面环境的情况下,只关闭该问题应用,其他...