`
esteem
  • 浏览: 156088 次
  • 性别: Icon_minigender_1
  • 来自: 武汉
社区版块
存档分类
最新评论

Map/Reduce 分析

阅读更多

转自 http://www.mengyan.org/blog/archives/2006/11/15/138.html

 

在Google,每天有海量的数据需要在有限的时间内进行处理(其实每个互联网公司都会碰到这样的问题),每个程序员都需要进行分布式的程序开发,这其中包括如何分布、调度、监控以及容错等等。Google的MapReduce正是把分布式的业务逻辑从这些复杂的细节中抽象出来,使得没有或者很少并行开发经验的程序员也能进行并行应用程序的开发。

MapReduce中最重要的两个词就是Map(映射)和Reduce(规约)。初看Map/Reduce这两个词,熟悉Function Language的人一定感觉很熟悉。FP把这样的函数称为”higher order function”(”High order function”被成为Function Programming的利器之一哦),也就是说,这些函数是编写来被与其它函数相结合(或者说被其它函数调用的)。如果说硬要比的化,可以把它想象成C里面的CallBack函数,或者STL里面的Functor。比如你要对一个STL的容器进行查找,需要制定每两个元素相比较的Functor(Comparator),这个Comparator在遍历容器的时候就会被调用。

拿前面说过图像处理程序来举例,其实大多数的图像处理操作都是对图像矩阵进行某种运算。这里的运算通常有两种,一种是映射,一种是规约。拿两种效果来说,”老照片”效果通常是强化照片的G/B值,然后对每个象素加一些随机的偏移,这些操作在二维矩阵上的每一个元素都是独立的,是Map操作。而”雕刻”效果需要提取图像边缘,就需要元素之间的运算了,是一种Reduce操作。再举个简单的例子,一个一维矩阵(数组)[0,1,2,3,4]可以映射为[0,2,3,6,8](乘2),也可以映射为[1,2,3,4,5](加1)。它可以规约为0(元素求积)也可以规约为10(元素求和)。

面对复杂问题,古人教导我们要“之”,英文中对应的词是”Divide and Conquer“。Map/Reduce其实就是Divide/Conquer的过程,通过把问题Divide,使这些Divide后的Map运算高度并行,再将Map后的结果Reduce(根据某一个Key),得到最终的结果。

Googler发现这是问题的核心,其它都是共性问题。因此,他们把MapReduce抽象分离出来。这样,Google的程序员可以只关心应用逻辑,关心根据哪些Key把问题进行分解,哪些操作是Map操作,哪些操作是Reduce操作。其它并行计算中的复杂问题诸如分布、工作调度、容错、机器间通信都交给Map/Reduce Framework去做,很大程度上简化了整个编程模型。

MapReduce的另一个特点是,Map和Reduce的输入和输出都是中间临时文件(MapReduce利用Google文件系统来管理和访问这些文件),而不是不同进程间或者不同机器间的其它通信方式。我觉得,这是Google一贯的风格,化繁为简,返璞归真。

接下来就放下其它,研究一下Map/Reduce操作。(其它比如容错、备份任务也有很经典的经验和实现,论文里面都有详述)

Map的定义:

Map, written by the user, takes an input pair and produces a set of intermediate key/value pairs. The MapReduce library groups together all intermediate values associated with the same intermediate key I and passes them to the Reduce function.

Reduce的定义:

The Reduce function, also written by the user, accepts an intermediate key I and a set of values for that key. It merges together these values to form a possibly smaller set of values. Typically just zero or one output value is produced per Reduce invocation. The intermediate values are supplied to the user’s reduce function via an iterator. This allows us to handle lists of values that are too large to fit in memory.

MapReduce论文中给出了这样一个例子:在一个文档集合中统计每个单词出现的次数。

Map操作的输入是每一篇文档,将输入文档中每一个单词的出现输出到中间文件中去。

map(String key, String value):
    // key: document name
    // value: document contents
    for each word w in value:
        EmitIntermediate(w, “1″);

比如我们有两篇文档,内容分别是

A - “I love programming”

B - “I am a blogger, you are also a blogger”。

B文档经过Map运算后输出的中间文件将会是:

	I,1
	am,1
	a,1
	blogger,1
	you,1
	are,1
	a,1
	blogger,1

Reduce操作的输入是单词和出现次数的序列。用上面的例子来说,就是 (”I”, [1, 1]), (”love”, [1]), (”programming”, [1]), (”am”, [1]), (”a”, [1,1]) 等。然后根据每个单词,算出总的出现次数。

reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
        result += ParseInt(v);
    Emit(AsString(result));

最后输出的最终结果就会是:(”I”, 2″), (”a”, 2″)……

实际的执行顺序是:

  1. MapReduce Library将Input分成M份。这里的Input Splitter也可以是多台机器并行Split
  2. Master将M份Job分给Idle状态的M个worker来处理;
  3. 对于输入中的每一个<key, value> pair 进行Map操作,将中间结果Buffer在Memory里;
  4. 定期的(或者根据内存状态),将Buffer中的中间信息Dump到本地磁盘上,并且把文件信息传回给Master(Master需要把这些信息发送给Reduce worker)。这里最重要的一点是,在写磁盘的时候,需要将中间文件做Partition(比如R个)。拿上面的例子来举例,如果把所有的信息存到一个文件,Reduce worker又会变成瓶颈。我们只需要保证相同Key能出现在同一个Partition里面就可以把这个问题分解。
  5. R个Reduce worker开始工作,从不同的Map worker的Partition那里拿到数据(read the buffered data from the local disks of the map workers),用key进行排序(如果内存中放不下需要用到外部排序 - external sort)。很显然,排序(或者说Group)是Reduce函数之前必须做的一步。 这里面很关键的是,每个Reduce worker会去从很多Map worker那里拿到X(0<X<R) Partition的中间结果,这样,所有属于这个Key的信息已经都在这个worker上了。
  6. Reduce worker遍历中间数据,对每一个唯一Key,执行Reduce函数(参数是这个key以及相对应的一系列Value)。
  7. 执行完毕后,唤醒用户程序,返回结果(最后应该有R份Output,每个Reduce Worker一个)。

可见,这里的分(Divide)体现在两步,分别是将输入分成M份,以及将Map的中间结果分成R份。将输入分开通常很简单,Map的中间结果通常用”hash(key) mod R”这个结果作为标准,保证相同的Key出现在同一个Partition里面。当然,使用者也可以指定自己的Partition Function,比如,对于Url Key,如果希望同一个Host的URL出现在同一个Partition,可以用”hash(Hostname(urlkey)) mod R”作为Partition Function。

对于上面的例子来说,每个文档中都可能会出现成千上万的 (”the”, 1)这样的中间结果,琐碎的中间文件必然导致传输上的损失。因此,MapReduce还支持用户提供Combiner Function。这个函数通常与Reduce Function有相同的实现,不同点在于Reduce函数的输出是最终结果,而Combiner函数的输出是Reduce函数的某一个输入的中间文件。

Tom White给出了Nutch[2]中另一个很直观的例子,分布式Grep。我一直觉得,Pipe中的很多操作,比如More、Grep、Cat都类似于一种Map操作,而Sort、Uniq、wc等都相当于某种Reduce操作。

加上前两天Google刚刚发布的BigTable论文,现在Google有了自己的集群 - Googel Cluster,分布式文件系统 - GFS,分布式计算环境 - MapReduce,分布式结构化存储 - BigTable,再加上Lock Service。我真的能感觉的到Google著名的免费晚餐之外的对于程序员的另一种免费的晚餐,那个由大量的commodity PC组成的large clusters。我觉得这些才真正是Google的核心价值所在。

呵呵,就像微软老兵Joel Spolsky(你应该看过他的”Joel on Software”吧?)曾经说过,对于微软来说最可怕的是[1],微软还在苦苦追赶Google来完善Search功能的时候,Google已经在部署下一代的超级计算机了。

The very fact that Google invented MapReduce, and Microsoft didn’t, says something about why Microsoft is still playing catch up trying to get basic search features to work, while Google has moved on to the next problem: building Skynet^H^H^H^H^H^H the world’s largest massively parallel supercomputer. I don’t think Microsoft completely understands just how far behind they are on that wave.

 

分享到:
评论

相关推荐

    Map/Reduce:大规模集群上的简化数据处理

    该模型的核心思想是将复杂的并行和分布式计算过程简化为两个主要步骤:Map 和 Reduce。Map 阶段将原始数据拆分成键值对,应用用户自定义的映射函数,生成中间键值对;Reduce 阶段则将具有相同中间键的值聚合,通过...

    远程调用执行Hadoop Map/Reduce

    本篇文章将深入探讨“远程调用执行Hadoop Map/Reduce”的概念、原理及其实现过程,同时结合标签“源码”和“工具”,我们将涉及到如何通过编程接口与Hadoop集群进行交互。 Hadoop MapReduce是一种编程模型,用于大...

    对云计算中几种基础设施(Dynamo,Bigtable,Map/Reduce等)的朴素看法

    本文将深入探讨云计算的三大关键技术:Dynamo、Bigtable和Map/Reduce,并对比分析它们的设计理念和应用场景。 首先,Dynamo是亚马逊公司开发的一种分布式键值存储系统,主要用于支持大规模的在线服务,如S3存储服务...

    GEE教程(Map/Reduce 的并行编程概念).ipynb

    该模块介绍了使用 Map/Reduce 的并行编程概念--这是有效使用地球引擎分析大量数据的关键。您将学习如何使用地球引擎 API 计算各种光谱指数,进行云遮蔽,然后使用 Map/reduce 将这些计算应用于图像集合。您还将学习...

    map/reduce template

    标题中的“map/reduce template”指的是MapReduce编程模型的一个模板或框架,它是Apache Hadoop项目的核心部分,用于处理和生成大数据集。MapReduce的工作原理分为两个主要阶段:Map阶段和Reduce阶段,它允许程序员...

    基于Map_Reduce的分布式搜索引擎研究

    在对Map/Reduce算法进行分析的基础上,利用开源Hadoop软件设计出高容错高性能的分布式搜索引擎,以面对搜索引擎对海量数据的处理和存储问题

    现有student.txt和student-score.txt 将两个文件上传到hdfs上 使用Map/Reduce框架完成下面

    它由两部分组成:`Map`阶段和`Reduce`阶段。MapReduce框架负责调度任务、管理计算节点和处理系统故障等底层细节。 ### MapReduce实现案例分析 根据题目要求,我们需要连接`student.txt`和`student_score.txt`这两...

    基于Map/Reduce的改进选择算法在云计算的Web数据挖掘中的研究.pdf

    MapReduce模型包括两个主要阶段:Map(映射)阶段和Reduce(归约)阶段。在Map阶段,系统将输入数据分割成独立的块,然后将每个块分发给不同的节点进行处理。每个节点处理自己分到的数据块,并输出中间结果,通常是...

    大数据技术基础实验报告-MapReduce编程.doc

    MapReduce 是一种分布式计算模型,由Google提出,主要用于处理和分析海量数据。在这个实验报告中,我们将探讨如何在Eclipse环境中设置和使用MapReduce编程。 首先,为了在Eclipse上编写和运行MapReduce程序,我们...

    Map-Reduce原理体系架构和工作机制,eclipse与Hadoop集群连接

    ### Map-Reduce原理体系架构和工作机制 #### 一、Map-Reduce原理概述 Map-Reduce是一种编程模型,用于...在实际应用中,Map-Reduce已经被广泛应用于搜索引擎索引构建、社交网络数据分析、金融交易记录分析等领域。

    基于Hadoop的MapReduce框架研究报告.ppt

    Map/Reduce计算模型的核心是map和reduce两个函数,这两个函数由用户负责实现,功能是按一定的映射规则将输入的, value&gt;对转换成另一个或一批, value&gt;对输出。 四、Map和Reduce函数计算模型 Map和Reduce函数是Map/...

    Hadoop教程.pdf

    本文档提供了Hadoop Map/Reduce教程的详细介绍,从用户的角度出发,全面地介绍了Hadoop Map/Reduce框架的各个方面。下面是其中的重要知识点: 1. Hadoop是一个分布式的文件系统,可以将多台机器组装成一台超级...

    hadoop map-reduce turorial

    通过对源代码的详细分析和实际运行测试,用户可以更深入地理解Hadoop Map-Reduce的工作原理,掌握更高级的数据处理技巧。 总之,Hadoop Map-Reduce框架不仅为大数据处理提供了强大的工具,同时也为用户提供了丰富的...

    使用Map-Reduce对大规模图进行排名和半监督分类

    在“textgraphs09.pdf”论文中,作者可能详细讨论了如何应用MapReduce实现这些算法的具体步骤,包括数据预处理、Map和Reduce操作的设计、优化策略以及实验结果的分析。文档“使用Map-Reduce对大规模图进行排名和半...

    Hadoop下的分布式搜索引擎

    了Map/Reduce编程模型运行原理及其优点,其次介绍 了Map/Reduce模型的开源实现版本——Hadoop分布 式处理平台,在此基础上将搜索引擎的爬行器、索引器和 查询器三个功能模块按照Map/Reduce模型进行设计, 充分利用...

Global site tag (gtag.js) - Google Analytics