我曾经非常自豪地拥有一台Intel P4 2.8G超线程技术的计算机,它的内存刚刚扩容到了1GB,在绝大多数情况下,它都静静地等待着我,等待我去利用它的每一点计算能力,至少我时常这样幻想。回首10年前,那时候主流PC的主频是66M,内存是8M。PC本身的计算能力提高了百倍,物理世界如果这样提高的话,十年前的一层楼就是现在上海最高的建筑物。
但是,无论如何它都只是一台PC(我不得不配上D版软件,Matlab的价格就是USD23000!),世界上的限制永远存在,我们从数学上更是可以发现这些限制——也许说计算复杂度上的天然限制更加合适。我回忆起了今年的线性系统理论考试中的一道题,非常简单问题,给了一个4维线性时不变系统的Jordan标准型,写出能控规范型。实际上就是一个简单的数学变换,假设特征根两两相异的话,就是将系统矩阵A去用一个Vandermonde矩阵以及它的逆做线性变换,其中的Vandermonde矩阵的元素由系统矩阵A的特征多项式组成。但是在考试中你很快会发现,四阶的Vandermonde逆是如此的难求,实际上在考试中绝大多数人都无法通过手算获得正确的答案。考试过后,老师说此题有简便解法,但我这个人一向脑子不太会拐弯,而且比较偏爱IBM的四海一家式解决方案,所以让我们看看,在电脑的帮助下,我们可以最多处理到多少维的线性系统。
现在坐在电脑前,解决这个问题:给定Vandermonde矩阵,求逆,来看看有了现代科技的帮助,4维的系统是多么不值一提。
启动Matlab后依次输入:
% 生成特征值依次为1,2,3,4的Vandermonde矩阵
V=vander(1:4)
% 求逆
Vi=inv(V)
% 验证乘积是否为单位阵
Vi*V
可以看到:
ans =
1.0000 0 -0.0000 -0.0000
0 1.0000 -0.0000 0.0000
0.0000 0 1.0000 -0.0000
0 0 0 1.0000
虽然格式不是很漂亮,0有的还带个正负,但完全没有问题,前后计算几乎不需要时间!
天性乐观的我马上计算了一下14维的vandermondel矩阵,虽然只是增加了10维,但是马上会遇到数值计算中的舍入误差问题,最终的答案为(为了美观我截去了后面6列类似项):
ans =
1.0000 0.0000 0 -0.0000 0.0000 0.0000 -0.0000 0.0000
-0.0000 1.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000
0.0000 -0.0000 1.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000
-0.0000 -0.0000 -0.0000 1.0000 -0.0000 -0.0000 -0.0000 -0.0000
0.0005 -0.0001 -0.0000 -0.0000 1.0000 -0.0000 -0.0000 -0.0000
-0.0090 -0.0002 -0.0000 0.0000 0.0000 1.0000 -0.0000 0.0000
0.0664 -0.0005 -0.0000 0.0000 -0.0000 -0.0000 1.0000 0.0000
-0.1250 -0.0059 -0.0018 -0.0003 -0.0000 -0.0000 -0.0000 1.0000
0.2500 -0.0586 -0.0103 -0.0007 -0.0001 -0.0000 -0.0000 0.0000
-5.2500 0.1563 0.0225 0.0025 -0.0000 0.0000 0.0000 -0.0000
8.0000 0.5625 0.0996 0.0081 0.0001 -0.0000 0.0000 0.0000
-10.5000 -0.4375 -0.0156 -0.0059 0.0000 -0.0000 -0.0000 -0.0000
-1.0000 -0.2188 -0.0234 -0.0002 -0.0006 -0.0000 0.0000 0.0000
0.7500 0.0469 0.0151 0.0024 0.0002 0.0000 0.0000 0.0000
可以看到,实际上高阶vandermondel是非常病态的,通过数值算法见长的Matlab无法承受浮点舍入误差累计,单位阵已经是不成样子了,应该是0的地方出现了8和-10!虽然我有一台超快的PC,计算14阶问题不需要时间,但我还是被浮点精度拌住了,十年来PC的浮点精度可没有一点点的提高,安藤的64位芯片也没有办法。可见,即使你拥有一台超快的计算机,没有合适的软件也白搭;即使你拥有了控制界最令人敬仰的Matlab,号称The language of technical computing也得臣服于IEC 60559:1989, Binary Floating-point Arithmetic for Microprocessor Systems 标准之下。
其实我哪里敢贬低Matlab和IEC(国际电工委员会),两者都是在学术界,甚至只要是受过高等教育的人都非常敬仰的。但是,中学语文老师教我,欲褒先抑,为了隆重介绍下面的这个软件,我自然就只能说说违心的话了。Maple软件远没有Matlab那么有名,我想在数学软件中,知名度只能排第三(至少在国内次序是Matlab,Mathmatica,Maple)。不过最近我才发现在符号计算中,相对有名的Mathmatica可能比不上Maple,至少Maple是我唯一已知可以直接计算多项式矩阵(Matrix Polynomial Algebra)中左右最大公因子的软件。好了,扯远了,下面还是让我们看看使用Maple能不能突破这个浮点天堑:
同样在Maple中依次输入:
# 在Maple中要显示申明要使用线性代数计算了
with(LinearAlgebra):
# 生成特征值依次为1,2,3,4的Vandermonde矩阵
v:=[$1..14]:
M:=VandermondeMatrix(v);
% 求逆(天哪,为什么就没有一个数学命令标准?每个软件的相同操作都有略微不同的名字)
Mi:=MatrixInverse(M);
% 验证乘积是否为单位阵
Mi.M;
Wow,双击返回的写有14*14矩阵答案框,你可以看到完美的标准14阶单位阵!整个计算也是快的惊人(其实只要计算不超过一秒对于人类都是快的惊人),好奇的我马上试验了一下40阶的Vandermonde,同样没问题,总共计算用时3.35秒,40阶的Vandermonde矩阵如此的病态,条件数已经是10的75次方数量级了。
其实在Matlab中有Symbolic Toolbox符号工具箱,照例也可以解决40阶vandermonde矩阵求逆问题,但是我在Matlab 7.0 SP1环境下就是死机,看来Matlab的符号计算内核Maple 8还有不少问题啊。
实际上,我还试过200阶的Vandermonde矩阵,这基本上是你用PC所能达到的计算极限了,总共计算用时3577秒,基本上一个小时,内存需求486388K,小于512兆内存的PC机可能无法达到这个计算极限。无论如何,这已经是一个天文数字了。实际上,200阶的Vandermonde,矩阵中最大元素为:
200^199=80346902212949513777098104617058130126110149689139641765068800000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
或者写成浮点的8.03469E+457,实际上这是一个我们很难通过直观想象的一个巨大的数字,丈量夸克到浩瀚的宇宙只需要10的30次方精度即可完全度量,如果一个原子就是一个宇宙的话,这一数字可以构成的这样的180个循环!
乐观的说,尚未读完大学的学生已经能够勉强处理十年前只有顶尖科学家才能处理的计算了,人类的发展真的是日新月异,悲观的看,我如何能够找到比较实用的数学问题来在这个极限下获得社会的认可呢?
现在我只能说:Never stop thinking——Infineon(天哪,连这样的话也被人家抢先说去了,这年头创新真的很难。)
分享到:
相关推荐
到了20世纪70年代,MACSYMA系统成为最强大的符号计算系统,可以处理多种符号计算任务,如极限计算、符号积分、解方程等。muMATH系统是第一个在IBM的PC机上运行的计算机代数系统。而进入80年代后,随着个人计算机的...
deepseek最新资讯、配置方法、使用技巧,持续更新中
Heric拓扑并网离网仿真模型:PR单环控制,SogIPLL锁相环及LCL滤波器共模电流抑制技术解析,基于Heric拓扑的离网并网仿真模型研究与应用分析:PR单环控制与Sogipll锁相环的共模电流抑制效能,#Heric拓扑并离网仿真模型(plecs) 逆变器拓扑为:heric拓扑。 仿真说明: 1.离网时支持非单位功率因数负载。 2.并网时支持功率因数调节。 3.具有共模电流抑制能力(共模电压稳定在Udc 2)。 此外,采用PR单环控制,具有sogipll锁相环,lcl滤波器。 注:(V0004) Plecs版本4.7.3及以上 ,Heric拓扑; 离网仿真; 并网仿真; 非单位功率因数负载; 功率因数调节; 共模电流抑制; 共模电压稳定; PR单环控制; sogipll锁相环; lcl滤波器; Plecs版本4.7.3及以上,Heric拓扑:离网并网仿真模型,支持非单位功率因数与共模电流抑制
2024免费微信小程序毕业设计成品,包括源码+数据库+往届论文资料,附带启动教程和安装包。 启动教程:https://www.bilibili.com/video/BV1BfB2YYEnS 讲解视频:https://www.bilibili.com/video/BV1BVKMeZEYr 技术栈:Uniapp+Vue.js+SpringBoot+MySQL。 开发工具:Idea+VSCode+微信开发者工具。
基于SMIC 40nm工艺库的先进芯片技术,SMIC 40nm工艺库技术细节揭秘:引领半导体产业新革命,smic40nm工艺库 ,smic40nm; 工艺库; 芯片制造; 纳米技术,SMIC 40nm工艺库:领先技术驱动的集成电路设计基础
2013年上半年软件设计师上午题-真题及答案解析
shp格式,可直接导入arcgis使用
ROS下的移动机器人路径规划算法:基于强化学习算法DQN、DDPG、SAC及TD3的实践与应用,ROS系统中基于强化学习算法的移动机器人路径规划策略研究:应用DQN、DDPG、SAC及TD3算法,ROS下的移动机器人路径规划算法,使用的是 强化学习算法 DQN DDPG SAC TD3等 ,ROS; 移动机器人; 路径规划算法; DQN; DDPG; SAC; TD3,ROS强化学习移动机器人路径规划算法研究
粒子群优化算法精准辨识锂电池二阶RC模型参数:高仿真精度下的SOC估计铺垫,粒子群优化算法精准辨识锂电池二阶RC模型参数:仿真验证与SOC估计铺垫,使用粒子群优化算法(PSO)辨识锂电池二阶RC模型参数(附MATLAB代码) 使用粒子群优化算法来辨识锂离子电池二阶RC模型的参数。 将粒子群优化算法寻找到的最优参数代入二阶RC模型进行仿真,经过验证,端电压的估计误差小于0.1%,说明粒子群优化算法辨识得到的参数具有较高的精度,为锂离子电池SOC的估计做铺垫。 ,关键词:粒子群优化算法(PSO); 锂电池二阶RC模型参数辨识; MATLAB代码; 端电压估计误差; 锂离子电池SOC估计。,PSO算法优化锂电池二阶RC模型参数:高精度仿真与MATLAB代码实现
selenium环境搭建-谷歌浏览器驱动
在当今科技日新月异的时代,智慧社区的概念正悄然改变着我们的生活方式。它不仅仅是一个居住的空间,更是一个集成了先进科技、便捷服务与人文关怀的综合性生态系统。以下是对智慧社区整体解决方案的精炼融合,旨在展现其知识性、趣味性与吸引力。 一、智慧社区的科技魅力 智慧社区以智能化设备为核心,通过综合运用物联网、大数据、云计算等技术,实现了社区管理的智能化与高效化。门禁系统采用面部识别技术,让居民无需手动操作即可轻松进出;停车管理智能化,不仅提高了停车效率,还大大减少了找车位的烦恼。同时,安防报警系统能够实时监测家中安全状况,一旦有异常情况,立即联动物业进行处理。此外,智能家居系统更是将便捷性发挥到了极致,通过手机APP即可远程控制家中的灯光、窗帘、空调等设备,让居民随时随地享受舒适生活。 视频监控与可视对讲系统的结合,不仅提升了社区的安全系数,还让居民能够实时查看家中情况,与访客进行视频通话,大大增强了居住的安心感。而电子巡更、公共广播等系统的运用,则进一步保障了社区的治安稳定与信息传递的及时性。这些智能化设备的集成运用,不仅提高了社区的管理效率,更让居民感受到了科技带来的便捷与舒适。 二、智慧社区的增值服务与人文关怀 智慧社区不仅仅关注科技的运用,更注重为居民提供多元化的增值服务与人文关怀。社区内设有互动LED像素灯、顶层花园控制喷泉等创意设施,不仅美化了社区环境,还增强了居民的归属感与幸福感。同时,社区还提供了智能家居的可选追加项,如空气净化器、远程监控摄像机等,让居民能够根据自己的需求进行个性化选择。 智慧社区还充分利用大数据技术,对居民的行为数据进行收集与分析,为居民提供精准化的营销服务。无论是周边的商业信息推送,还是个性化的生活建议,都能让居民感受到社区的智慧与贴心。此外,社区还注重培养居民的环保意识与节能意识,通过智能照明、智能温控等系统的运用,鼓励居民节约资源、保护环境。 三、智慧社区的未来发展与无限可能 智慧社区的未来发展充满了无限可能。随着技术的不断进步与创新,智慧社区将朝着更加智能化、融合化的方向发展。比如,利用人工智能技术进行社区管理与服务,将能够进一步提升社区的智能化水平;而5G、物联网等新技术的运用,则将让智慧社区的连接更加紧密、服务更加高效。 同时,智慧社区还将更加注重居民的体验与需求,通过不断优化智能化设备的功能与服务,让居民享受到更加便捷、舒适的生活。未来,智慧社区将成为人们追求高品质生活的重要选择之一,它不仅是一个居住的空间,更是一个融合了科技、服务、人文关怀的综合性生态系统,让人们的生活更加美好、更加精彩。 综上所述,智慧社区整体解决方案以其科技魅力、增值服务与人文关怀以及未来发展潜力,正吸引着越来越多的关注与认可。它不仅能够提升社区的管理效率与居民的生活品质,更能够为社区的可持续发展注入新的活力与动力。
PowerSettingsExplorer.rar 电脑的电源管理软件,明白的不多说。自己搜索即可知道。
deepseek最新资讯,配置方法,使用技巧,持续更新中
deepseek最新资讯、配置方法、使用技巧,持续更新中
RabbitMQ 是一个开源的消息代理(Message Broker),实现了 AMQP(Advanced Message Queuing Protocol) 协议,用于在分布式系统中实现高效、可靠的消息传递。
西门子S7-1200与汇川PLC新通信选择:Ethernet IP通信的突破与优势,功能安全及精准同步的创新实践。,西门子S7-1200与汇川PLC通信新选择:Ethernet IP通信方案亮相,替代Modbus TCP实现更高级功能与安全控制。,西门子PLC和汇川PLC新通信选择-西门子S7-1200 1500系列PLC也开始支持Ethernet IP通信了。 这为西门子系列的PLC和包括汇川AM400 600等Codesys系PLC的通信提供了新的解决方案。 当前两者之间的通信大多采用ModBus TCP通信。 Modbus TCP和EtherNet IP的区别主要是应用层不相同,ModbusTCP的应用层采用Modbus协议,而EtherNetIP采用CIP协议,这两种工业以太网的数据链路层采用的是CSMACCD,因此是标准的以太网,另外,这两种工业以太网的网络层和传输层采用TCPIP协议族。 还有一个区别是,Modbus协议中迄今没有协议来完成功能安全、高精度同步和运功控制等,而EtherNet IP有CIPSatety、ClIP Sync和ClPMotion来
自适应无迹卡尔曼滤波AUKF算法:系统估计效果展示与特性分析(含MATLAB代码与Excel数据),自适应无迹卡尔曼滤波AUKF算法:系统估计效果展示与特性分析(含MATLAB代码与Excel数据),自适应无迹卡尔曼滤波AUKF算法 配套文件包含MATLAB代码+excel数据+学习资料 估计效果与系统特性有关,图片展示为一复杂系统估计效果 ,AUKF算法; MATLAB代码; excel数据; 学习资料; 估计效果; 系统特性。,自适应无迹卡尔曼滤波AUKF算法:MATLAB代码与学习资料
基于MATLAB Simscape的IGBT开关特性模型:揭示开关损耗、米勒平台及瞬态行为的分析工具,IGBT开关特性模型与MATLAB Simscape模拟:深入理解开关行为及损耗数据,IGBT开关特性模型,MATLAB Simscape模型。 该模型展示了IGBT的详细的开关模型,用于创建开关损耗列表数据。 有助于理解IGBT米勒平台、瞬态开关行为。 也可以用于MOOSFET。 ,IGBT开关模型; MATLAB Simscape; 开关损耗; 米勒平台; 瞬态开关行为; MOOSFET。,MATLAB Simscape中IGBT精细开关模型:揭示米勒平台与瞬态行为
基于卷积神经网络CNN的多输入单输出数据回归预测——含详细注释与多种评估指标(R2、MAE、MBE),基于卷积神经网络CNN的多输入单输出数据回归预测模型详解——附代码注释、指标评估及Excel数据处理方法,基于卷积神经网络CNN的数据回归预测 多输入单输出预测 代码含详细注释,不负责 数据存入Excel,替方便,指标计算有决定系数R2,平均绝对误差MAE,平均相对误差MBE ,基于卷积神经网络CNN; 数据回归预测; 多输入单输出; 详细注释; Excel存储; 指标计算(R2; MAE; MBE); 不负责。,基于CNN的卷积数据回归预测模型:多输入单输出代码详解与性能评估
2024免费微信小程序毕业设计成品,包括源码+数据库+往届论文资料,附带启动教程和安装包。 启动教程:https://www.bilibili.com/video/BV1BfB2YYEnS 讲解视频:https://www.bilibili.com/video/BV1BVKMeZEYr 技术栈:Uniapp+Vue.js+SpringBoot+MySQL。 开发工具:Idea+VSCode+微信开发者工具。